BioUML plug-in for nonlinear parameter estimation using multiple experimental data

Elena Kutumova, Anna Ryabova, Tagir Valeev, Fedor Kolpakov

DOI: 10.12704/vb/e10


Motivation: Systems biology deals with many different types of experimental data representing individual components of biological systems. Behavior of these systems over time could be described using systems of ordinary differential equations (ODE). In order to analyze dynamics of the ODEs and estimate their parameters based on data obtained in different experimental conditions, biologists need a flexible framework that allows them to create dynamic models and perform multi-experiment parameter fitting.

Results: We present optimization tools of the BioUML software ( developed for modeling and analysis of biochemical systems. We created optimization plug-in to solve non-linear optimization problems via minimization of the function of deviations between experimental data and model simulation results. Experimental data can be considered as separate sets of time courses or steady states stored in different tab-separated files. BioUML includes several deterministic and stochastic optimization methods which find reasonably accurate solutions faster than the COPASI software. Some of these methods provide constrained optimization and some of them were parallelized.


BioUML, parameter estimation, multi-experiment parameter fitting

Full Text:



Bagci E Z, Vodovotz Y, Billiar T R, Ermentrout G B, Bahar I, authors. Bistability in apoptosis: roles of bax, bcl-2, and mitochondrial permeability transition pores. Biophys J. 1–3;2006;(5)90:1546–1559. DOI:10.1529/biophysj.105.068122 [PMID:16339882]

Balsa-Canto Eva, Banga Julio R, authors. AMIGO, a toolbox for advanced model identification in systems biology using global optimization. Bioinformatics. 17–6;2011;(16)27:2311–2313. DOI:10.1093/bioinformatics/btr370 [PMID:21685047]

Björkman M, Holmström K, authors. Global Optimization Using the DIRECT Algorithm in Matlab. Advanced Modeling and Optimization. 1999;(2)1:17–37

Brown Peter N, Byrne George D, Hindmarsh Alan C, authors. VODE: A Variable-Coefficient ODE Solver. SIAM J. Sci. and Stat. Comput. 1989;(5)10:1038–1051. ISSN: 0196-5204 DOI:10.1137/0910062

Dormand J R, Prince P J, authors. A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics. 1980;(1)6:19–26. ISSN: 03770427 DOI:10.1016/0771-050X(80)90013-3

Gorban A N, Radulescu O, Zinovyev A Y, authors. Asymptotology of chemical reaction networks. Chemical Engineering Science. 2010;(7)65:2310–2324. ISSN: 00092509 DOI:10.1016/j.ces.2009.09.005

Hairer E, Wanner G, authors. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. 1996. 2nd revised. Berlin: Springer;

Hawkins Douglas M, author. The problem of overfitting. J Chem Inf Comput Sci. 2004;(1)44:1–12. DOI:10.1021/ci0342472 [PMID:14741005]

Hoops Stefan, Sahle Sven, Gauges Ralph, Lee Christine, Pahle Jürgen, Simus Natalia, Singhal Mudita, Xu Liang, Mendes Pedro, Kummer Ursula, authors. COPASI--a COmplex PAthway SImulator. Bioinformatics. 10–10;2006;(24)22:3067–3074. DOI:10.1093/bioinformatics/btl485 [PMID:17032683]

Hucka M, Finney A, Sauro H M, Bolouri H, Doyle J C, Kitano H, Arkin A P, Bornstein B J, Bray D, Cornish-Bowden A, Cuellar A A, Dronov S, Gilles E D, Ginkel M, Gor V, Goryanin I I, Hedley W J, Hodgman T C, Hofmeyr J-H, Hunter P J, Juty N S, Kasberger J L, Kremling A, Kummer U, Le Novère N , Loew L M, Lucio D, Mendes P, Minch E, Mjolsness E D, Nakayama Y, Nelson M R, Nielsen P F, Sakurada T, Schaff J C, Shapiro B E, Shimizu T S, Spence H D, Stelling J, Takahashi K, Tomita M, Wagner J, Wang J, authors. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics. 1–3;2003;(4)19:524–531. [PMID:12611808]

Ingber L, author. Adaptive simulated annealing (ASA): Lessons learned. Control and Cybernetics. 1996;(1)25:33–54

Kholodenko B N, author. Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur J Biochem. 2000;(6)267:1583–1588. [PMID:10712587]

Kutumova Elena, Zinovyev Andrei, Sharipov Ruslan, Kolpakov Fedor, authors. Model composition through model reduction: a combined model of CD95 and NF-κB signaling pathways. BMC Syst Biol. 15–2;2013;7:13 DOI:10.1186/1752-0509-7-13 [PMID:23409788]

Maiwald Thomas, Timmer Jens, authors. Dynamical modeling and multi-experiment fitting with PottersWheel. Bioinformatics. 9–7;2008;(18)24:2037–2043. DOI:10.1093/bioinformatics/btn350 [PMID:18614583]

Mendes Pedro, Hoops Stefan, Sahle Sven, Gauges Ralph, Dada Joseph, Kummer Ursula, authors. Computational modeling of biochemical networks using COPASI. Methods Mol Biol. 2009;500:17–59. DOI:10.1007/978-1-59745-525-1_2 [PMID:19399433]

Moles Carmen G, Mendes Pedro, Banga Julio R, authors. Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 14–10;2003;(11)13:2467–2474. DOI:10.1101/gr.1262503 [PMID:14559783]

Nebro Antonio J, Durillo Juan J, Luna Francisco, Dorronsoro Bernabé, Alba Enrique, authors. MOCell: A cellular genetic algorithm for multiobjective optimization. Int. J. Intell. Syst. 2009;(7)24:726–746. ISSN: 08848173 DOI:10.1002/int.20358

Neumann Leo, Pforr Carina, Beaudouin Joel, Pappa Alexander, Fricker Nicolai, Krammer Peter H, Lavrik Inna N, Eils Roland, authors. Dynamics within the CD95 death-inducing signaling complex decide life and death of cells. Mol Syst Biol. 9–3;2010;6:352 DOI:10.1038/msb.2010.6 [PMID:20212524]

Runarsson T P, Yao Xin, authors. Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evol. Computat. 2000;(3)4:284–294. ISSN: 1089778X DOI:10.1109/4235.873238

Schmidt Henning, Jirstrand Mats, authors. Systems Biology Toolbox for MATLAB: a computational platform for research in systems biology. Bioinformatics. 29–11;2005;(4)22:514–515. DOI:10.1093/bioinformatics/bti799 [PMID:16317076]

Shaffer Clifford A, Zwolak Jason W, Randhawa Ranjit, Tyson John J, authors. Modeling molecular regulatory networks with JigCell and PET. Methods Mol Biol. 2009;500:81–111. DOI:10.1007/978-1-59745-525-1_4 [PMID:19399431]

Sierra Margarita R, Coello Carlos A Coello, authors. Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and ∈-Dominance. Evolutionary Multi-Criterion Optimization. 2005. p. 505–519. Berlin, Heidelberg: Springer Berlin Heidelberg; DOI:10.1007/978-3-540-31880-4_35


  • There are currently no refbacks.