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Abstract 
 

Despite wide application of the powerful ChIP-Seq technology for experimental 

identification of transcription factor (TF) binding sites, the computational prediction of 

the TF-binding sites is also relevant. Many methods for the prediction of the TF-binding 

sites have been developed over the last decades. Some of them represent position weight 

matrix (PWM) approach that is the most common and widely used. However, there exists 

little guidance in the choice among these methods because of a comprehensive 

comparison of existing methods is still challenging in practice. Thus, the direct use of the 

ChIP-Seq data for assessing predictive ability of the methods does not seem advisable 

because of such reasons as the tethered binding or false positive rates of peak detection 

algorithms. We have developed computational toolkit for reliable comparison of 

prediction methods under condition that unknown fraction of the ChIP-Seq data do not 

contain genuine TF-binding sites. On the base of developed toolkit, we have performed 

comparative analysis of three existing methods that represent PWM approach. The 

analysis has revealed that MATCH performed significantly worse than two other methods 

while common additive method outperformed others. 

 

 

Introduction 

 
Since its introduction in 2007 (Johnson et al., 2007), ChIP-Seq has become the most 

powerful experimental technique for the genome-wide study of interactions between TFs 

and DNA. As a rule, a single ChIP-Seq experiment generates millions of short reads. 

Then the sequenced reads are aligned (mapped) to a reference genome and the TF-

binding regions are identified by applying a peak detection algorithm (or peak finder) to 

the resulted set of tags (aligned reads). Until now a number of peak detection algorithms 

have been proposed, in particular, MACS (Model-based Analysis of ChIP-Seq) (Zhang et 

al., 2008) and SISSRs (Site Identification from Short Sequence Reads) (Jothi et al., 

2008). The reproducibility of nine peak detection algorithms including MACS and 

SISSRs was studied in (Li et al., 2011) on two repeated ChIP-seq experiments for CTCF. 
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It was inferred that MACS is one of the highest reproducible algorithm while SISSRs is 

the least reproducible. This conclusion was made with the help of the correspondence 

profiles fitted by copula model. 

 

A comparative analysis of nine peak detection algorithms including MACS and SISSRs 

was performed in (Laajala et al., 2009). This comparison demonstrated that biological 

conclusions could change dramatically when the same raw ChIP-Seq dataset was 

processed using different algorithms. It was also indicated that the optimal choice of 

algorithm depends heavily on selected dataset. Eleven different peak detection algorithms 

including MACS and SISSRs were also compared on common data sets (Wilbanks and 

Facciotti, 2010). This study offered a variety of ways to assess the performance of each 

algorithm and addressed the questions as to how to select the most suitable among several 

available methods. In general, one can conclude that currently it is impossible to choose 

the most reliable and well-validated algorithm for peak detection. 

 

Despite the emergence of ChIP-Seq technology, application of the theoretical methods 

for prediction of TF-binding sites is also relevant. Initially ChIP-Seq approach was 

designed as experimental tool for identification of TF-binding sites. Unfortunately, some 

TF-binding regions do not represent genuine TF-binding sites because of, at least, the 

following three reasons. First, peak detection algorithms can produce much wider TF-

binding regions (500 – 2000 bp or longer) than actual TF-binding sites (5-15bp). Second, 

some TF-binding regions are spurious due to false positive rates of methods for read 

mapping and for peak detection. Third, unknown fraction of the TF-binding regions 

should not contain the TF-binding sites because of tethered binding (Wang et al., 2012). 

In this case, transcription factor bound to DNA fragment not because it recognized its 

site, but because it bound (due to protein-protein interaction) to another transcription 

factor that, in turn, bound to DNA. 

 

In the 30 years since PWM approach was introduced (Stormo et al., 1982), it has become 

the most common and widely used for computational analysis of the TF-binding sites, see 

(Stormo, 2013) for a review. A number of methods for prediction of the TF-binding sites 

have been developed within this approach. In particular, PWM algorithms were 

implemented in the computational tools such as MATCH (Kel et al., 2003) MatInspector 

(Quandt et al., 1995), MATRIX SEARCH (Chen et al., 1995), ANN-Spec (Workman and 

Stormo, 2000) and MEME (Bailey et al., 2006). There are several repositories that 

accumulate many matrices for representation of TF-binding sites, in particular, 

TRANSFAC (Matys et al., 2006), JASPAR (Portales-Casamar et al., 2010), Factorbook 

(Wang et al., 2012), UniPROBE (Robasky and Bulyk, 2012) and HOCOMOCO 

(Kulakovskiy et al., 2013) are among them. Usually these matrices were derived from the 

experimentally identified TF-binding sites (or regions) obtained by gel-shift analysis, 

SELEX, plasmid construction assays, ChIP-Seq, universal protein binding microarray 

technology (PBM) and other experimental techniques. Majority of those PWMs are 

represented as position frequency matrices. 

 

In general, the Receiver Operating Characteristic (ROC) curve has long been used in 

signal detection theory (Fukunaga, 1990; Therrien, 1989). It is a good way of visualizing 
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the correspondence between sensitivity and false positive rate (or False Discovery Rate, 

FDR) of a detection method. The area under the ROC curve, known as the AUC, is 

currently considered as the standard measure to assess the accuracy of prediction methods 

including those for prediction of the TF-binding sites. Currently it is common practice to 

reduce comparison of different prediction methods to comparison of the corresponding 

AUCs (Mathelier and Wasserman, 2013; Smeenk et al., 2008; Alamanova et al., 2010). It 

is important to note that it is necessary to have a representative sample of genuine TF-

binding sites in order to evaluate the sensitivities of the comparable methods. 

Unfortunately, the direct use of the TF-binding region sets for sensitivity estimation does 

not seem advisable because of, at least, three reasons (including tethered binding) 

mentioned above. The main goal of our article is to work out a toolkit for reliable 

comparison of methods for prediction of the TF-binding sites under condition that 

unknown fraction of the TF-binding regions do not contain genuine TF-binding sites. On 

the base of developed toolkit, we have performed comparative analysis of the following 

three site models that represent PWM approach: common additive model, common 

multiplicative model and MATCH model. This analysis was carried out on 266 sets of 

human TF-binding regions from GTRD (Gene Transcription Regulation Database; 

http://wiki.biouml.org/index.php/GTRD) and matrices from TRANSFAC. The analysis 

has revealed that MATCH performed significantly worse than two other methods while 

common additive method outperformed others. It is important to note that inference of 

our comparative analysis is invariant with respect to choice of peak detection algorithm 

despite dissimilarities between MACS and SISSRs that were revealed by our toolkit. 

 

 

Materials and methods 
 

Data 

 

Our toolkit intensively uses the human TF-binding region sets as input data. These sets, 

in turn, are stored in GTRD database. The GTRD collected raw ChIP-Seq data 

(sequenced reads) from literature, Gene Expression Omnibus (GEO), (Barrett et al., 

2013), Sequence Read Archive (SRA), (Wheeler et al., 2008) and ENCODE project 

(http://www.nature.com/nature/journal/v489/n7414/full/nature11247.html). Currently 

GTRD contains 1450 human raw ChIP-Seq data sets and the ChIP-Seq controls (such as 

input DNA or IgG) are available for 1291 (89%) sets. The sequenced reads were aligned 

to reference genome (build 37) using Bowtie (Langmead et al., 2009) and the sets of the 

TF-binding regions were generated independently with the help of MACS and SISSRs. 

 

The ROC curves and AUCs as basis of comparison 

 

According to common practice, the areas under the ROC curves are widely used in order 

to compare the site models. In turn, each ROC curve represents the correspondence 

between sensitivity of model and FDR (False Discovery Rate). In general, it is necessary 

to have a representative sample of genuine TF-binding sites in order to calculate the 

sensitivity. However, only sets of the TF-binding regions are available instead of the 

required samples. It is assumed that each TF-binding contains genuine TF-binding site. 
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Therefore the sensitivity was computed as a relative number of the TF-binding regions 

that contain one or more TF-binding sites predicted. The FDR was determined as the 

relative number of the TF-binding regions containing false positives among all TF-

binding regions containing site predictions. It was calculated with the help of 10-fold 

permutations of nucleotides in each TF-binding region. For UACs calculation we have 

used the sets of the TF-binding regions that are stored in GTRD. 

 

Scheme of site model comparison 

 

According to common practice, the comparison of site models is reduced to comparison 

of AUCs. In turn, AUCs are calculated on the sets of the TF-binding regions. However, 

the direct use of the full TF-binding region sets for the AUCs calculation does not seem 

advisable because some TF-binding regions can be empty, i.e. do not contain genuine TF-

binding sites. The following scheme of site model comparison takes into account the 

assumption about existence of empty TF-binding regions. 

 

We have developed the computational toolkit for ChIP-Seq based comparison of the 

PWM methods therefore the given position frequency matrix and the set of the TF-

binding regions are the input for the AUCs calculation; see Figure 1. Thus, the site 

models share the same matrix but represent distinct algorithms for site scoring. Then the 

given set of the TF-binding regions can be modified, if necessary. Namely, all the TF-

binding regions can be shortened or lengthened depending on a priori information about 

them. 

Site 
models

Matrix

Best 
sites

The set of
TF-binding regions

The modified set of 
TF-binding regions

τ-union of TF-
binding regions

ROC curves,
AUCs

τ-union of 
best sites

 
Figure 1. Flowchart of the AUCs calculation. 

 



At the next step, each site model predicts its so-called ‘best site’ in every modified TF-

binding region. The ‘best site’ of the given site model is defined as fragment of the TF-

binding region where site model evaluated maximal score among all scores calculated for 

every possible fragments of the TF-binding region. Then top list of the τ percent (τ is 

given) of ‘best sites’ with the highest scores is selected for each site model and the so-

called τ-union of the ‘best sites’ is composed as a union of all top lists selected. Finally, 

the so-called the τ-union of the TF-binding regions is defined as merged union of such 

TF-binding regions that contain at least one ‘best site’ from τ-union of the ‘best sites’. At 

last, the ROC curves are generated on the τ-union of the TF-binding regions and the 

corresponding AUC values are calculated. 

 

 

Implementation 
 

The proposed toolkit has been designed not only to perform the site model comparative 

analysis but also to reveal some fruitful features of the site models and the TF-binding 

regions. The toolkit consists of the following five independent computational modules 

(tools) implemented with the help of the open source BioUML / geneXplain plug-in 

framework (http://biouml.org/; http://genexplain.com/): 

 

1. ‘ROC curves for best sites union’ 

2. ‘Summary on AUCs’ 

3. ‘Peak finders comparison’ 

4.  ‘Locations of best sites’ 

5.  ‘ROC curves in grouped peaks’. 

 

The ‘ROC curves for best sites union’ module is a key tool in the toolkit. According to 

the flowchart in Figure 1, it generates the ROC curves (see, for example, Figure 2) and 

calculates the corresponding AUCs for the user-selected set of site models when value of 

parameter τ (1≤ τ ≤ 100) and the set of the TF-binding regions are pre-specified. To form 

the set of site models, the toolkit provides user with the following basic list of the five 

available site models that share the same input matrix and represent PWM approach: 

Common additive model, Common multiplicative model, MATCH model, IPS model and 

Multiplicative IPS model, see Appendix for details. In order to modify (if necessary) the 

initial set of the TF-binding regions, toolkit provides user with appropriate input 

parameters, see Table A1 in Appendix for details. The resulted ROC curves and 

corresponding AUCs will be stored within user-specified folder. 
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Figure 2. Screenshot of ‘ROC curves for best sites union’ tool. 

 

 

The ‘Summary on AUCs’ tool performs comparative analysis of site models when value 

of parameter τ is pre-specified. Initially all appropriate AUC values calculated by ‘ROC 

curves for best sites union’ tool are read in all available tables. Then comparison of AUC 

values is performed with the help of non-parametrical Friedman test and Wilcoxon signed 

rank test (Hollander and Wolfe, 2003). In the case of Friedman test, chi-squared 

distribution with (k-1) degrees of freedom is used for assessing the statistical significance 

of difference between AUCs, where k denotes number of site models. In the case of 

Wilcoxon test, the significances of the differences are assessed with the help of normal 

approximations of the test statistics. Probability densities of differences between paired 

AUCs are estimated by kernel density estimator (Wasserman, 2004) with Epanechnikov 

kernel and are plotted for user. 

 

The ‘Peak finders comparison’ tool performs comparative analysis of two peak detection 

algorithms. To compare two peak detection algorithms, this tool carries out comparative 

analysis of the matched sets of the TF-binding regions where the numbers and mean 

lengths of the TF-binding regions are analyzed independently with the help of Wilcoxon 

signed rank test. The statistical significances are assessed on the base of normal 

approximations of the test statistics. Additionally, the impact of the ChIP-Seq controls 



(such as input DNA or IgG) on the performance of peak detection algorithms is analyzed. 

Probability densities of the numbers and mean lengths of the TF-binding regions are 

estimated by kernel density estimator with Epanechnikov kernel and are plotted for user. 

 

The ‘Locations of best sites’ tool estimates and plots the probability density of the ‘best 

site’ locations along the TF-binding regions around the so-called summits where summit 

is determined by MACS as precise binding location within given TF-binding region. 

Probability density is estimated by kernel density estimator with Epanechnikov kernel. 

 

The ‘ROC curves in grouped peaks’ tool was developed to analyze the relationships 

between the ROC curves and reliability characteristics that were assigned by peak 

detection algorithm to each TF-binding region. The tool rearranges the given TF-binding 

regions in increasing order of the reliability characteristic and divides the ordered set into 

several groups of the same size. Then the ROC curves are generated and the 

corresponding AUCs are calculated on each group. 

 

 

Application 
 

Comparison of MACS and SISSRs 

 

On the one hand, comparative analysis of peak detection algorithms has an independent 

(substantive) interest. On the other hand, this analysis can reveal some features of the TF-

binding region sets and the revealed features, in turn, can be appropriately taken into 

account in site model comparison in order to increase the reliability of conclusions. 

 

For comparison of MACS and SISSRs, the ‘Peak finders comparison’ tool carried out 

comparative analysis of 1450 pairs of the human TF-binding regions sets stored in 

GTRD. Two characteristics, namely the numbers and mean lengths of the TF-binding 

regions were analyzed independently with the help of Wilcoxon signed rank test. 

Statistical significances of the differences were assessed with the help of normal 

approximations of the test statistics. 

 

The performed analysis has revealed the following two dissimilarities between MACS 

and SISSRs. First, MACS generated significantly more the TF-binding regions than 

SISSRs when the ChIP-Seq controls were available, see Table 1. However, if ChIP-Seq 

controls were not available then SISSRs generated significantly more the TF-binding 

regions than MACS, see Table 1. Figure 3(A, B) demonstrates the probability densities of 

numbers of the TF-binding regions. 

 

Second, comparative analysis has revealed that SISSRs generated significantly shorter 

TF-binding regions than MACS and this second dissimilarity is invariant with respect to 

presence/absence of the ChIP-Seq controls, see Table 1 and Figure 3(C, D). According to 

revealed dissimilarities we made conclusion that MACS and SISSRs have processed 

differently the same raw ChIP-Seq data. 

 



 

Table 1. Comparative analysis of MACS and SISSRs with the help of Wilcoxon signed 

rank test. 

Comparable 

characteristic 

ChIP-Seq 

control 

availability 

Average 

characteristic 

for MACS 

Average 

characteristic 

for SISSRs 

Wilcoxon 

statistic 

(normal 

approximation) 

p-value 

Number of 

the TF-

binding 

regions 

Available 34013 7887 30.483 <10
-10

 

Not 

available 

28359 40839 6.069 1.3×10
-9

 

Mean length 

of the TF-

binding 

regions 

Available 811 105 31.123 <10
-10

 

Not 

available 

714 137 10.937 <10
-10

 

 

 

(A) ChIP-Seq control is available  (B) ChIP-Seq control is not available 

 
 

(C) ChIP-Seq control is available  (D) ChIP-Seq control is not available 



 
Figure 3. Probability densities of (A, B) number of the TF-binding regions and (C, D) 

mean length of the TF-binding regions. 

 

 

Comparative analysis of three site models 

 

On the base of developed toolkit, we have performed comparative analysis of the 

following three site models that represent PWM approach: common additive model, 

common multiplicative model and MATCH model, see their description in Appendix. For 

this analysis we have selected 266 TFs for whom we found simultaneously matrices in 

TRANSFAC (release 2012.4) and human TF-binding region sets in GTRD. It is 

important to note that we did not consider matrices derived for TF families. For example, 

despite the availability of USF1-binding region set in GTRD, we did not involve it into 

analysis because there is no appropriate matrix for the USF1-binding sites in 

TRANSFAC that contains matrices V$USF_01, V$USF_02, V$USF_C, V$USF_Q6 and 

V$USF_Q6_01 derived for the USF family. 

 

Comparative analysis was performed independently on 266 sets of the TF-binding 

regions generated by MACS and on 214 sets generated by SISSRs. In the case of SISSRs 

we excluded 52 sets from our analysis because of their small sizes (<500). According to 

the flowchart in Figure 1, the ‘ROC curves for best sites union’ tool has calculated three 

AUCs on the given set of the TF-binding regions when value of parameter τ was 

specified. We have considered independently the following five values of τ: 100%, 35%, 

25%, 15% and 5%. According to Table 1 and Figure 3(C, D), MACS produced much 

wider TF-binding regions than actual TF-binding sites. Therefore the initial set of the TF-

binding regions was modified as follows. If the TF-binding regions were processed by 

MACS then we redefined them as regions of the lengths 200bp with the centers in 

summits. If the TF-binding regions were processed by SISSRs then all short (<200bp) 

regions are extended to 200bp. 

 



After the AUC calculations the ‘Summary on AUCs’ tool has carried comparative 

analysis of site models with the help of Friedman and Wilcoxon tests. Chi-squared 

distribution with two degrees of freedom was used for assessing the significance of 

differences between three site models, see Table 2. On the base of this test, we made the 

conclusion that there exists significant difference between site models. This conclusion is 

invariant with respect to the choice of peak detection algorithm. However, this test is not 

intended to identify outperformance (superiority) of particular site model. 

 

To get idea about site model outperformance, we analyzed all three possible pairs of site 

models with the help of Wilcoxon signed rank test, see Table 3. This analysis has 

revealed that MATCH performed significantly worse than two other models while 

common additive model outperformed others. For instance, when τ=25 in the case of 

MACS the common additive model outperformed MATCH for 78.6% TFs and common 

multiplicative model outperformed MATCH for 66.5% TFs, see last column of Table 3. 

Probability densities of differences between AUCs also demonstrate that MATCH 

performed worse. It is important to note that, as in the case of Friedman test, the 

conclusions again do not depend on the choice of peak detection algorithm. 

 

 

Table 2. Comparison of three site models with the help of Friedman test. 

Peak detection 

algorithm 

Percentage τ Friedman test 

statistic 

p-value 

 

 

MACS 

100 17.556 1.541×10
-4

 

35 108.076 <10
-12

 

25 139.908 <10
-12

 

15 163.188 <10
-12

 

5 218.362 <10
-12

 

 

 

SISSRs 

100 15.165 5.093×10
-4

 

35 51.732 5.843×10
-12

 

25 91.103 <10
-12

 

15 92.104 <10
-12

 

5 106.150 <10
-12

 

 

 

Table 3. Comparative analysis of three site models with the help of Wilcoxon test. 

1-st site 

model 

2-nd site 

model 

Peak 

detection 

algorithm 

Percentage 

τ 

Wilcoxon 

statistic 

(normal 

approximation) 

p-value Portion (in 

%) of TFs for 

which 1-st 

site model 

outperforms 

2-nd site 

model 

 

 

 

 

 

 

 

 

 

 

MACS 

100 3.875 1.067×10
-4

 61.3 

35 11.238 <10
-15

 75.9 

25 10.652 <10
-15

 78.6 

15 11.593 <10
-15

 80.5 



Common 

additive 

model 

MATCH 5 12.056 <10
-15

 78.6 

 

 

SISSRs 

100 3.434 5.941×10
-4

 59.3 

35 7.414 1.226×10
-13

 69.6 

25 8.653 <10
-15

 75.7 

15 8.971 <10
-15

 72.4 

5 9.112 <10
-15

 71.0 

 

 

 

Common 

multiplicative 

model 

 

 

 

 

MATCH 

 

 

MACS 

100 3.250 0.001 59.4 

35 4.080 4.512×10
-5

 61.7 

25 5.145 2.676×10
-7

 66.5 

15 5.951 2.667×10
-9

 67.7 

5 6.405 1.507×10
-10

 72.2 

 

 

SISSRs 

100 3.626 2.877×10
-4

 61.7 

35 3.622 2.926×10
-4

 62.6 

25 4.627 3.702×10
-6

 65.4 

15 4.546 5.466×10
-6

 66.8 

5 4.539 5.649×10
-6

 68.2 

 

 

 

Common 

additive 

model 

 

 

 

Common 

multipli-

cative 

model 

MACS 100 0.074 0.941 50.8 

35 7.472 7.927×10
-4

 71.4 

25 8.831 <10
-15

 71.1 

15 9.740 <10
-15

 71.4 

5 11.580 <10
-15

 77.1 

SISSRs 100 1.825 0.068 47.2 

35 5.183 2.181×10
-7

 61.7 

25 6.359 2.034×10
-10

 66.4 

15 7.692 1.443×10
-14

 68.2 

5 7.849 4.219×10
-15

 67.3 

 

 



 
Figure 4. Probability densities of differences between AUCs when τ=25. 

 

 

Discussion 
 

Currently the AUCs values are considered as the standard measures to assess the 

predictive abilities of site models. Certainly, for accurate calculation of precise AUCs it is 

necessary to have the representative samples of genuine TF-binding sites. Unfortunately, 

only sets of the TF-binding regions are available instead of the required samples. One can 

expect that direct use of initial sets of the TF-binding regions for the AUC calculations is 

not reasonable because some of the TF-binding regions can be empty. Indeed, it turned 

out that for majority of the selected TFs the values of AUCs were closed to 0.5 (see, for 

instance, Table 4) while the shapes of the ROC curves were approximately linear (see, for 

instance, Figure 5) when we directly used initial sets of the TF-binding regions. The low 



AUC values have actually indicate a need for development of the special toolkit for 

comparison of site models on ChIP-Seq data. 

 

 

Table 4. AUCs calculated on YY1- and STAT1-binding regions. Matrices V$YY1_01 

and V$STAT1_01 as well as the corresponding sets of the TF-binding regions with 

GTRD’ IDs PEAKS030196 and PEAKS010470 were used for calculation of AUCs. 
 
 
TF 

 
Peak detection 
algorithm 

AUCs for site models 

MATCH Common 

additive model 

Common 

multiplicative 

model 

 

YY1 

MACS 0.569 0.564 0.549 

SISSRs 0.569 0.574 0.570 

 

STAT1 

MACS 0.515 0.515 0.480 

SISSRs 0.475 0.494 0.468 

 

 

(A) YY1, MACS    (B) STAT1, MACS 

 
 

(C) YY1, SISSRs   (D) STAT1, SISSRs 



 
Figure 5. The ROC curves obtained on YY1- and STAT1-binding regions that were 

generated by MACS and SISSRs. 

 

 

A shape of the ROC curve and the AUC value can be affected not only by empty TF-

binding regions but also by lengths of the TF-binding regions. One can expect that the 

wider TF-binding regions, the higher FDR and the less convex the ROC curve. According 

to Table 1 and Figure 3(C, D), MACS produced much wider TF-binding regions than 

genuine TF-binding sites. In order to find an appropriate way to shorten reasonably the 

TF-binding regions generated by MACS, ‘Locations of best sites’ tool has estimated the 

probability densities of ‘best sites’ locations around the summits with the help of kernel 

density estimator. For majority of the selected 266 TFs it appeared that ‘best sites’ of 

each site model preferred to locate near summits and the maximal values of densities 

were observed approximately in the range [-100bp, 100bp] with respect to summits. 

Figure 6 demonstrates, for instance, the probability densities of ‘best sites’ locations 

around the summits within YY1- and STAT1-binding regions. 

 

 

(A) YY1     (B) STAT1 



 
 

Figure 6. Probability densities of ‘best sites’ locations around summits for (A) YY1 and 

(B) STAT1. 

 

 

The key step of the proposed scheme of the AUCs calculation (see Figure 1) is the 

construction of the τ-union of the TF-binding regions, where the percentage τ is free 

parameter. In general, there exists the following relationship between τ values and the 

shapes of the ROC curves: the smaller percentage τ, the more convexity of the ROC 

curve and the higher AUC values. Thus, for small values of τ (5% - 15%) the ROC 

curves, as a rule, are strongly convex while the shapes of the ROC curves became 

approximately linear when τ tends to 100%, see, for example, Figure 7 where the ROC 

curves were generated on the YY1-binding regions (processed by MACS). In turn, the 

corresponding values of AUCs are closed to 0.5 when τ tends to 100% while these values 

are closed to 1.0 when τ tends to 5%, see Table 5. 

 

 

(A) τ = 100%   (B) τ = 50%   (C) τ = 35% 

 
 

(D) τ = 25%   (E) τ = 15%   (F) τ = 5% 



 
Figure 7. The ROC curves obtained for different values of τ on the YY1-binding regions 

that were generated by MACS. 

 

 

Table 5. AUCs calculated for different values of τ on the YY1-binding regions that were 

generated by MACS. 
 
 
Percentage, 
τ 

Site model Percentage 

of regions 

that are 

classified 

as empty 

 

MATCH 

Common 

multiplicative 

model 

Common 

additive 

model 

100 0.548 0.550 0.555 0 

50 0.707 0.694 0.716 37.5 

35 0.782 0.744 0.778 51.5 

25 0.835 0.817 0.852 65.4 

15 0.892 0.899 0.918 78.8 

5 0.956 0.963 0.972 92.9 

 

 

It is important to note that the shown relationship between τ and shape of the ROC curve 

can be interpreted as follows. According to definition of the τ-union of the TF-binding 

regions, it consists of such TF-binding regions that contain ‘best sites’ with the highest 

scores. In other words, the TF-binding regions containing ‘best sites’ with the smallest 

scores are removed. The removed TF-binding regions, in turn, represent empty regions 

from the point of view of all site models considered. Obviously, The higher percentage τ, 

the smaller number of regions that are classified as empty, see also first and last columns 

of Table 5. In this connection, it is interesting to note the following tendency presented in 

Table 3: the higher percentage τ, the lower statistical significance of differences between 

site models. In other words, the higher percentage τ, the more noisy τ-union of the TF-

binding regions. Moreover, as a single exception, Wilcoxon test was not able to identify 

significant difference between common additive and multiplicative models on the full 

sets of the TF-binding regions (i.e. when τ =100%). However, this exception just 

confirms the assumption that full sets of the TF-binding regions can be noisy due to 

empty regions. 

 



Certainly, the construction of the τ-union of the modified TF-binding regions is just one 

of the possible ways to compose the refined sets of the TF-binding regions that can be 

used for site model comparison. One of the alternative ways to compose the refined sets 

is to select the most reliable TF-binding regions and this way has been implemented in 

‘ROC curves in grouped peaks’ tool. 

 

As a rule, a peak detection algorithm assigns several characteristics (such as ‘FDR’, ‘Fold 

enrichment’, ‘Tag number’, ‘Score’ and ‘p-value’) of reliability to each TF-binding 

regions identified. ‘ROC curves in grouped peaks’ tool rearranged all TF-binding regions 

in the individual set in increasing order of the reliability characteristic and divided the 

ordered set into six groups of the same size. One can expect that shapes of the ROC 

curves have to change visibly in transition from first group to sixth group. However, 

serious changes were not observed for majority of TFs; see, for instance, Figure 8 that 

demonstrates the ROC curves created on the STAT-binding regions. 

 

 

Group 1 6.0  Group 2 6.5  Group 3 7.5 

 
 

Group 4 8.6  Group 5 10.8  Group 6 65.8 

 
Figure 8. The ROC curves created on six groups of the STAT1-binding regions that were 

generated by SISSRs. ‘Tag number’ characteristic was used for division into groups. 

Average ‘Tag number’ is also shown for each group. 

 

 

Appendix 
 



Five site models available for comparative analysis 

 

Currently, five site models that represent PWM approach are available for comparative 

analysis. For given TF they share the same position frequency matrix MAT = (mij), 

i={A,C,G,T}, j=1,...,l but produce diverse scores for fixed DNA fragment S = (s1,...,sl). In 

other words, the models represent different scoring algorithms. 

 

1. Common additive model. This model calculates the common additive score x defined 

by formula 

x = x(MAT) = j=1,...,l   score(j), 

where the values score(j),  j=1,…,l, are determined as follows: 

 

score(j) = {mAj, if sj=A;    mCj, if sj=C;   mGj, if sj=G; mTj,   if sj=T}. 

 

2. Common multiplicative model. For fragment S this model calculates the common 

multiplicative score xm, 

 

xm = ∏j=1,...,l   score(j).  

This model can be converted to equivalent additive model by taking logarithms of matrix 

elements, i.e. 

xln = j=1,...,l   score*(j), 

 

where the values score*(j),  j=1,…,l, are determined as follows: 

 

score*(j) = {ln(mAj), if sj=A;    ln(mCj),  if sj=C;   ln(mGj), if sj=G; ln(mTj)  if sj=T}. 

 

In order to avoid taking logarithm of zero we preliminarily found minimal non-zero 

element of matrix MAT. Then we replaced all zero values of MAT by this value and re-

normed all changed columns of MAT in such a way that the sum of frequencies in each 

changed column was equal to unit. 

 

3. MATCH model. This model is determined by popular PWM method MATCH for TF-

binding site prediction. This model calculates the so-called matrix similarity score mSS 

defined in (Kel et al., 2003). Actually, this model is common additive model, which uses 

transformed matrix instead of initial matrix, where each column of transformed matrix 

was determined with the help of weighting the corresponding initial column by 

information content. More specifically, the j-th column of weight matrix is equal (up to 

the constant (–Min / (Max-Min))) to product of the j-th column of frequency matrix and 

the value I(j) / (Max-Min), j=1,...,l, where I(j), Min, and Max were defined in (Kel et al 

2003). 

 

4-5. IPS model and Multiplicative IPS model. Briefly, in addition to the common 

additive/multiplicative scores, these models take into account the nucleotide content of 



the both flanks of the site cores. The detailed description of these models will be 

published in next volume of Virtual Biology. 

 

 

Description of the inputs in tools 

 

Table A1. Description of the inputs in tools. 

Tool Name of the input Description 

 

 

 

 

 

 

‘ROC curves for 

best sites union’ 

Input track Path to GTRD track that contains the 

initial set of the TF-binding regions. 

Sequences source The genome build (has to be selected). 

Is around summit 

(IAS) 

If IAS = true and summit exists, then each 

TF-binding region will be redefined as 

region of the length lmin with the center in 

summit. 

Minimal region 

length (lmin) 

If IAS = false, then all short (<lmin) regions 

will be extended to lmin. 
If IAS = false and lmin = 1 then the TF-

binding regions will not be modified. 

% of best sites Percentage τ (1≤ τ ≤ 100) 

Types of site models Basic list of the site models available for 

comparison. User can select the subset of 

site models. 

Matrix Path to position frequency matrix. 

Filtration matrix Path to matrix for identification site motifs 

associated with the Alu repeats. If this 

path is not empty then the TF-binding 

regions containing such motifs will be 

removed from the AUC calculation. 

Path to output folder The resulted ROC curves and AUCs will 

be stored within this folder. In particular, 

AUCs will be written into table with name 

‘AUCs’. 

 

 

 

 

 

 

‘Summary on 

AUCs’ 

Path to collection of 

folders 

Each folder has to contain table with the 

name ‘AUCs’ that stores the AUC values. 

It is assumed that these tables were created 

by ‘ROC curves for best sites union’ tool. 

% of best sites Percentage τ (1≤ τ ≤ 100) 

Path to output folder The results of statistical analysis will be 

stored within this folder. 

Are revised This input was developed in advance for 

future applications. Currently it is not 

functional. 

Minimal size (nmin) The AUC value will be omitted if it was 

calculated on the TF-binding region set 

with size less than nmin. 



 

 

 

 

 

‘Peak finders 

comparison’ 

Species In general, GTRD contains human, mouse 

and rat ChIP-Seq data. User can select a 

species. 

First folder 

containing ChIP-seq 

tracks 

This folder has to contain the sets of the 

TF-binding regions processed by first peak 

detection algorithm. 

Second folder 

containing ChIP-seq 

tracks 

This folder has to contain the sets of the 

TF-binding regions processed by second 

peak detection algorithm. 

Path to output folder The results of comparison of peak 

detection algorithms will be stored within 

this folder 

 

 

 

 

‘Locations of best 

sites’ 

Input track  

 

 

The same as in ‘ROC curves for best sites 

union’ tool 

Sequences source 

Is around summit 

Minimal region 

length 

% of best sites 

Types of site models 

Matrix 

Path to output folder The chart of probability density and table 

with positions of ‘best sites’ will be stored 

within this folder 

 

 

 

 

‘ROC curves in 

grouped peaks’ 

Input track  

 

 

The same as in ‘ROC curves for best sites 

union’ tool 

Sequences source 

Is around summit 

Minimal region 

length 

% of best sites 

Types of site models 

Matrix 

Number of groups How many groups of the TF-binding 

regions will be created. 

Path to output folder The resulted ROC curves and AUCs will 

be stored within this folder. 
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