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Abstract Motivation:  Modeling of  complex biological systems  such as  cells,  organs  or  even whole
organisms is not a trivial task because of their intricate structure. Although modern computers
allow simulation for quite complex models, such models are difficult to support and work with.
Modular  approach  facilitates  the  creation  of  complex  models  by  representing  them  as
combinations of submodels. On the other hand, there are a large number of models describing
particular subsystems created by different authors using different formalisms and scales. These
models may be reused as “bricks” in the creation of comprehensive overall models.

Results: We have developed a modular approach to the modeling of complex biological systems.
It includes a formal definition of graphical notation for modular models, an algorithm for the
transformation of a modular model into a non-modular model which is appropriate for simulation
using standard methods for solving ordinary differential equations (ODE), and an algorithm for
simulating modular model based on the agent-model principles. The approach was implemented
in software plug-in for BioUML platform.

Availability:  The developed  software and  the source code are freely available as  a part  of
BioUML in both standalone and web versions at www.biouml.org.

Keywords Modularity, Visual modeling, Flattening

Introduction
The modular approach involves  system description as a set of interconnected  subsystems. A model of a system is
represented as a combination of subsystem models (modules). A direct benefit is that modules can be created, validated,
and improved independently by different authors. Modules may utilize different mathematical formalisms, time and spatial
scales, and levels of detail. Modularity, by its nature, facilitates reusability; moreover, it separates modules’ interfaces and
inner realization.  Therefore modules  may be used  as replaceable parts: they can be easily modified  and improved
independently from other modules.  Another advantage is  the more explicit structure of the complex models,  which
facilitates their understanding and further support.

The modular approach is  widely used  in modern engineering,  and  in the past  decade,  its  importance in modeling
biological systems has become evident as well. One reason is that this approach well matches the structure of biological
systems on multiple levels: from cells [Hartwell et al, 1999] to organs and whole organisms [Cooling et al, 2010]. Snoep et
al. [Snoep et al, 2006] describe their vision of the construction of a comprehensive model describing a complete cellular
system at the reaction level (i.e.  silicon cell).  Such a model should  be constructed  on the basis  of many modules
developed by community and stored in one repository. An example of a manually created model by combining three
other models is provided.

Extensive research has also been devoted to the creation of a comprehensive global model of the human organism (virtual
physiological human). It is supported by International Union of Physiological Sciences Physiome Project [Hunter et al,
2002] and EuroPhysiome initiative [Fenner et al,  2008] coordinating the efforts  of many research groups around the
world. One of its major challenges is models integration and coupling [Fenner et al, 2008].

Such ambitious goals (creation of virtual cell and virtual human models) require widely accepted standards for model
description, which is crucial for model exchange and reuse and the development of approaches to composing models
and specialized tools for creation, simulation, and analysis of modular models. As a model becomes more and more
complicated, it would also greatly benefit from convenient visual representation and editing.

There are two general types of modular approach [Hernandez et al, 2009], [Vangheluwe, 2000]:

Formalism-transformation. A modular model is transformed into a flat model, which can be simulated using
standard  methods  (ODE,  stochastic,  etc.).  This  process  needs  a formal definition of the transformation of
different formalisms into each other, which is not a trivial task and may place strict limitations on modules. The

1



degenerate case is when all modules use the same formalisms and are even described in the same formal language
(for example SBML).

Co-simulation. This approach implies that each module should be simulated separately using its own simulation
engine.  This  process  should  be controlled  by some meta-engine which should  handle interactions  between
modules during the simulation.

Both approaches have advantages and disadvantages. In the first case, we have strict mathematical foundations but also
strict limitations on the module formalisms. In the latter case, we have great flexibility in the inner implementation of
models and no need for formalisms transformation algorithms. However, the co-simulation approach lacks mathematical
foundations. Even the questions about solution existence and uniqueness are open.

The key question for both approaches is how interactions between modules are described in the frames of the modular
model. Usually, there are some additional elements in the modular model which are used to integrate modules.

The way how the model addresses  the modules  is  another important question.  It may directly address  the module
elements (equations, chemical reactions, variables, etc) or the module elements can be accessed only through predefined
ports. Module ports define the interface through which other modules may be connected with it. The first approach is
more flexible and the latter approach provides more controllable and well-defined modular models.

If models of subsystems are initially designed to be modules, they may predefine their interfaces. For the modeler to
create a modular model, it takes only to pick up the needed modules and establish appropriate connections between their
interfaces.

Approaches to handle composite models are discussed in [Randhawa et al, 2009], [Randhawa, 2010]:

Fusion is simply manual creation of a larger model using submodels elements.

Composition means  that  a  complex  model  includes  submodels  in  an  implicit  manner.  Connections  are
established between their inner elements.

Aggregation differs from the composition in the way which submodel elements are available for the modular
model creator.  Submodels  predefine which elements  are accessible from other submodels.  This  implies  that
submodels are initially created to be parts of larger models.

Model flattening  is the process of automatic generation of a fused model on the basis of the complex model
created using a composition or aggregation approach. This procedure is a degenerate variant of the formalism-
transformation approach described previously.

Most widely used standards for model description are markup languages: SBML (Systems Biology Markup Language)
[Hucka et  al,  2003]  and  CellML [Garny et  al,  2008]. Both of  them are evolving toward  the modularity concept.
Discussion about including instruments for describing modular models continued in the SBML community since 2000,
and a number of proposals were made by different authors. Finally, in 2012 a specification for a composite hierarchic
extension to SBML and a set of tests were released. The extension allows SBML models refer to another SBML models.
This is provided by an instance object which contains a reference to a submodel. Submodels can be defined either in the
same file as the submodel object or somewhere else (they can be referred by URI). “Glue” elements which bind modules
are replacements which work in two directions. An element from a submodel can be replaced by an element of the
modular model or vice-versa. Two elements from different modules can be connected by replacing both of them with the
same element.  Elements  may be addressed  either  directly  or  through predefined  ports,  which correspond  to  the
composite approach.

CellML was  initially designed  to  directly support modularity.  Models  are composed of interconnected  components.
However, only version 1.1 which was finalized in 2006 [Garny et al, 2008] supports import of external models and their
reuse as parts of another models. Unlike SBML, in CellML modules may be connected only by replacing variable of one
module with the variable of another module. Modules should predefine ports for variables which may be of two types –
in and out. Connection between two modules defines mappings between “out” variable of one module and “in” variable
of another.

There are a lot of modeling and simulation tools for systems biology. For example, the most complete list of tools
supporting SBML is available at www.sbml.org and includes more than 250 tools. However, not many of them support
modular design. The reason may be that the SBML composite package was released only recently.

We will give a brief overview of tools for systems biology which support the modularity concept. Summary tables are
presented at the end of the current paper in the conclusion section.

Probably, the first modeling tool aiming to support modular design was ProMoT [Ginkel et al,  2003]. It presents an
object-oriented  language able to  describe modular models  with DAE formalism along with a visual representation.
Unfortunately, at the moment, it supports only SBML l2v1 without events, which is quite an old version of SBML.

JigCell [Vass et al, 2004] is a set of tools supporting SBML l2v1 and allowing SBML models aggregating [Randhawa et
al, 2009] into modular models. Modules are edited using tables of elements. It also provides simulation and analysis tools.

iBioSim [Myers et al, 2009] allows visual editing of SBML models and modular models; in addition it supports the SBML
composite hierarchic package.

There  are  also  several  pure  simulation  tools  supporting  SBML  composite  models  such  as  RoadRunner
(http://roadrunner.sf.net) and SB Simulation Core Library (http://simulation-core.sf.net).

TinkerCell [Chandran et  al,  2009] like iBioSim supports  both visual and  modular concepts.  It  is  plugin-based  and
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provides simulation and analysis using COPASI [Hoops et al, 2006]. However, to our knowledge, it supports only export
to SBML format.

M2SL [Hernandez  et  al,  2009]  bridges  the gap  in  supporting  multiformalism modeling  utilizing  the  co-simulation
approach, but, at the moment, it lacks standards support and visual representation of models.

As  regards  CellML,  the number  of  tools  supporting  it  is  significantly  less  than that  for  SBML (list  available  at
www.cellml.org). Moreover, although the language is modular by its  nature, many tools supporting it do not support
modularity and only provide import into flat models (JSim, http://www.physiome.org/jsim/, VirtualCell, http://vcell.org/).
Tools that support modular design (OpenCell, http://www.cellml.org/tools/opencell/, COR, http://cor.physiol.ox.ac.uk/)
lacks  visual representation of models. The only tools presented at the official site utilizing a visual approach are the
GUICellML  (see  www.cellml.org),  which  is  quite  simple  and  allows  modules  editing  only  as  CellML  text  and
CellModelViewer [Wimalaratne et al, 2009] and does not allow editing or creation of models.

SBML and CellML are not human readable, especially when dealing with complex modular models, and needs tools for
interpretation into a user friendly interface. There are several research efforts  aimed at describing modular models of
biological systems using human readable languages, e.g., Antimony [Myers et al, 2009] (supports SBML composite and
CellML), PySB [Lopez et al, 2013] (uses Python programming language to describe models, submodels are treated as
callable subroutines) and little-B [Mallavarapu et al, 2009] (based on Lisp). However, we believe that the creation and
support of complicated modular models strongly requires a visual representation and editing (human readable language,
though, may be a good add-on to it). A common standard for graphical notation in systems biology is SBGN [Novère et
al, 2009]. However, it does not provide notation for modular models. Therefore, our aim is  not only to implement a
modular approach, but also to develop a graphical notation and a convenient tool supporting both common standards
(SBML, CellML, SBGN) and multiple formalisms.

Modular model definition
In our approach (which is  more similar to CellML then to SBML), modules are black boxes which receive and send
signals. They may be combined using connections – special elements representing signal transfer from one module to
another. Here a signal is a value of a specified variable of the module. Hence, the overall model is described in terms of
signal transmission between the functional modules. This approach is well compatible with co-simulation: modules may
be simulated independently, and connections determine the exchange of variable values between them. However, it may
also be used for model transformation into a flat model. We have implemented an algorithm of such transformation for
the case where all modules have certain limitations on the mathematical formalism: differential algebraic equations (DAE)
with discrete events  and chemical reactions  which can be interpreted as  ODEs or stochastic  processes.  It provides
flexibility in modular model simulation: if all modules satisfy certain conditions, then the modular model will be simulated
using a transformation approach. If some modules do not satisfy these conditions, a generalized co-simulation approach
is applied. Visual representation of models  in both cases can be the same, and only the inner implementation of the
modules is changed.

Note that in the present paper, by DAE we will mean first order explicit differential equations supplemented with pure
algebraic equations which usually model conservation laws. Equations of this type are most common in systems biology
and can be described in SBML and CellML:











dx
dt

= f (x, y, t)

0 = g(x, y, t)

Essentially, a module is a black box with a defined interface through which it can be connected with other modules fig. 1.
Formally, we define it as a quadruple:

M = (X , I,O, C),

where:

X = {x1 , …, xn} – set of module variables

I ⊂ X – set of module input  variables, whose values should be transferred from the outside of the module.

O ⊂ X  – set of module output variables, whose values are calculated inside the module and may be transferred to other
modules.

C ⊂ X – set of module contact variables, whose values can be modified both inside the module and outside.

The sets of output input and contact variables define a module interface through which the module can be connected
with other modules. Graphically they are denoted using port  elements. It should be noted that, in general, some variables
may be both input and output or neither:

I ∩ O ∩ C ≠ ∅ ,

I ∪ O ∪ C ≠ X.

A module can be represented as a functional block which calculates output on the base of input:

M(I, C) =  (O, C)
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Figure 1. Module concept.

Suppose we have two modules:

M1 = (X1 , I1 ,O1 , C1),    M2 = (X2 , I2 ,O2 , C2).

Connection between two models is  defined as a correspondence between their variables. If two model variables are
interconnected they should be considered as one variable in the frames of modular model. Properties of this new variable
are determined by the connection type and interconnected variables.

Directed connection means that a new variable value is calculated in one module and then used in another. In that case,
one module affects another but not vice versa. Formally, it is a triple:

(x, y, p),  x ∈ I1 , y ∈ O2 ,  p :ℝ → ℝ

Where p is an arbitrary, not mandatory function. It can be used, for example, to adjust variable units.

Dynamics of a new variable will be fully defined by the dynamics of  y (and it will inherit its name and properties). All
references to x will be replaced by the expression p(y).

Notion: y →
p

x (x ←
p

y) or in short: y → x (x ← y).

Undirected connection means that a variable value may be changed by both modules (the modules affect each other).
Such variables are called shared. Formally, undirected connection is a pair:

(x, y),  x ∈ C1 , y ∈ C2 .

Dynamics of the new variable is a composition of two connected variables dynamics. Undirected connection may define
properties of the new variable such as name, initial value, etc directly, or by selecting one of the interconnected variables x
or y. If these properties are not set then one of interconnected variables will be selected randomly.

Notation: x←→y .  Further  in  the text,  a  connection chain x1 ← x2 ,  x2 ← x3…, xn− 1 ← xn ,  will be denoted  as
x1 ← x2 ← … ← xn− 1 ← xn  and similarly for undirected connections.

Semantic control. The following restrictions should be considered to create a semantically correct model:

Multiple ingoing directed connections for one variable are restricted (source of signal is ambiguous):

x → y ← z.

1.

Cyclic directed connections are restricted (source of signal is uncertain):

x ← y ← … ← z ← x

2.

Undirected and ingoing directed connection for the same variable (conflicting signals):

x → y ↔ z.

3.

We can now define a modular model:

MM = (M, E, DC, UC)

where:

M = {M1 , …, MN} – set of modules.

DC – set of directed connections between modules,

UC – set of undirected connections between modules.
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E – external environment for modules which defines conditions for modules interaction.

Environment  defines  two  types  of  interface (similar to  CellML interface types): private  interface is  used  to  alter
encapsulated modules behavior. Public interface is needed when modular model is encapsulated as a module into another
modular model forming hierarchical structure. Metaphor for private and public interfaces and using modular as a module
is presented on fig. 2.

Both interfaces  define three sets  of variables: input,  output and contact.  Private interface variables may be used to
establish connections with encapsulated modules. In that sense, environment may be simply considered as one of the
interacting modules.

Public interface is used when modular model is encapsulated into parent modular model as a module. These variables
then may be accessed by other modules. There are two ways to create public interface variable. It may be variable of
external environment which value is calculated according to established rules possibly under influence of encapsulated
modules. Another way is to extend interface variable of the encapsulated module to the interface of modular model by
establishing a connection between interface variable of a module and interface variable (of the same type) of environment.
It means that signal from encapsulated module should be propagated to the outside of the modular model (for output
variable) or signal incoming to the modular model will be propagated directly to one or more of it modules (for input
variables). Possible connections between environment and its modules are depicted on fig. 3.

Figure 2. Metaphor for private, public and propagat ed public ports.
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Figure 3. Environment and modules connections. Envi ronment has 6 interface variables. Private variable s A, B
and E are used for alteration of the modules behavi or. Public variables C, F and D constitutes interfa ce of the
modular model representation as a module. For graph ical notation see Table 1.

Visual modular modeling
As the base for implementation of the modular approach, we have used the BioUML platform (www.biouml.org) written
in Java. Important features of BioUML relevant to the modular model approach are:

Visual modeling support.

Supports of different mathematical formalisms: ODE/DAE with discrete events, stochastic, PDE.

SBML, CellML and SBGN support.

Tools for model analysis (steady state, sensitivity, flux balance, etc.) and parameter estimation.

Test suite facility for step by step validation of models during development.

Modular design – BioUML can be easily extended by adding software plugins.

BioUML describes a model as a graph whose nodes and edges denote model elements and interactions between them.
Each diagram element may be associated with a database entry and simultaneously with an abstract mathematical entity.
Diagrams may be visually created and edited by the user. Visual representation is defined by a formal graphical notation
which depends on the diagram type. For example, in importing a SBML model, the user may choose to represent it using
the SBGN or BioUML notation. Specific notation data along with graph layout information will be saved as an annotation
element.  Graph is  used to  generate Java code for numerical simulations.  The generated  code depends  only on the
mathematical properties  of the model; therefore,  the mathematically equivalent SBML (with or without SBGN) and
BioUML models will produce the same code.

In order to  implement the modular  approach in the BioUML platform,  we have developed  the graphical notation
presented in Table 1. The user interface for modular modeling is presented in Fig. 4. It includes graphical notation for
different modules types, interface ports and connections.
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Table 1. Graphical notation for modular models

Modules

Graphical notation Description X, I, O, C

Submodel.  Module  containing  a  mathematical
model. Possible model types:
Modular model,
SBML model,
ODE  model  with  discrete  events  created  in
BioUML,
Model of biological pathways created in BioUML,
PDE model of the human arterial tree.

Defined  by
submodel
properties.

Averager. Module calculating the moving average
of the input signal according to formula:

out(tk) =
1
n∑i=k−n

k
in(ti)

n – module parameter – number of data points.

X = {in, out},
I = {in},

O = {out},
C = ∅.

Switcher. Module outputting one of the two input
signals:

out =






in1,   h(t)        

in2,    otherwise

h :R → {true, false}

X = {in1, in2,
out},

I = {in1, in2},
O = {out},

C = ∅.

Constant. Module containing one variable with a
constant value.

X = {x},
I = ∅,
O = X,
C = ∅.

Plot.  Module  dynamically  drawing  input  signal
value on chart.

X is defined
by the user

I = X,
O = ∅,
C = ∅.

Bus. Module with one variable which can be input,
output  or  contact. Several  buses can contain the
same  variable,  which  decreases  the  edge
intersections.

X = {x},
I = X,
O = X,
C = X.

Other elements

Port  (input, output and contact). Refers to interface variables of
the module. Each port refers to one variable and only one port for
each variable may be declared in the module.

Connection (directed,  undirected).  Directed connection can be
established between the output port and the input port. Undirected
connection between two contact ports.
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Figure 4. BioUML web interface for the creation of modular models on the example of the short-term CVS  model
by professor Solodyannikov [Solodyannikov, 1994]. T he interface consists of a database tree on the lef t, which
provides a library for reusable models, a Panel for  editing the selected modular model at the center, and a panel
for editing the selected module below. It also cont ains various tabs (at the bottom) for model simulat ion, layout,
overview, etc.

The modular model definition described above permits modules integration only by connecting their variables. However,
the user probably would like to tune modules before integrating them into a modular model. This process is facilitated by
the state concept in BioUML (fig. 5). A state comprises a list of changes which are applied to the model. This can be
almost any change that can be done to the model: element deletion,  addition,  editing.  The model can be even fully
rewritten, though this  is  not the best practice and usually is  not expected. After adding the module into the modular
model, the user may specify which state will be used as default in the frames of the modular model or create a new state
for module.

Figure 5. State concept. Different inner realizatio ns of the same module. Model elements can be added (green
border), removed (red border), and edited (yellow b order). In the current example species A is set to boundary
condition,  new equation is added which sets A to ne w constant  value,  and species C  and reaction B →→→→ C  is
deleted.

Model flattening algorithm
In this section, we will describe an algorithm which transforms the modular diagram defined in previous sections into a
“flat” one. The input of the algorithm is a modular diagram with submodels that can be:

SBML model (in SBGN or BioUML notation)1.

ODE with discrete events model created in BioUML2.

Model describing biological pathways created in BioUML3.
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Modular model whose modules also satisfy conditions 1-4.4.

Technical modules – Switchers, Constants, Plots and buses – are also allowed. Only Averager module is restricted as it
cannot be efficiently transformed into an algebraic or ODE equation. Another natural restriction is that modular model
cannot contain itself as a module.

The result of the algorithm work is a diagram described in the same formalism. It can be interpreted either as a set of
DAE with events simulated by standard methods (Euler, Dormand-Prince, ported to Java CVODE [Hindmarsh et al,
2005]) or alternatively as a stochastic model simulated by stochastic algorithms [Gillespie, 2007].

The algorithm can be applied in two cases:

Automatically, when the user decides to simulate modular model. The transformed model is passed to the solver,
which generates the simulation result. The flat model is intermediate and is not stored in the repository or shown
to the user.

1.

If the user wants to convert a modular model into flat one and save it for further work. In this case the result is
the ODE model which is stored in the BioUML repository.

2.

The algorithm goes as follows:

Step 1. If some modules are modular models themselves, they are transformed into flat ODE modules, – the algorithm is
applied recursively.

Step 2. Each variable of each module is given a new name, unique in the frames of the modular model. The set of unique
identifiers will be denoted as NX . Created mapping: N :XMM → NX .

Step 3. Processing connections which are established in the modular model, replacement rules are generated. Each
variable x ∈ XMM  is associated with some mathematical expression S(x). Set of replacements will be denoted as S.

If there are no  ingoing directed or undirected  connection for x  (∄ y ∈ XMM : x ← y  ∨ x ↔ y),  then we set
S(x) = N(x).  Thus,  if there are no connections  in the model, then S  is  equal to  N  and each variable will be
replaced by its new name only. Moreover, if variable names in different modules do not coincide, then all names
will be preserved and no replacements will be done at all.

1.

∃ y ∈ XMM :  x ↔ y. Let us construct a chain (possibly cyclic) of undirected connection:

… ↔ x ↔ y ↔ … ↔ z

In this chain we choose one variable which will be called main, we will denote it as Main(x). Then for each
element of chain we set:

S(x) = S(Main(x)) = N(Main(x))

Choice of main variable:

If connection chain includes bus then bus variable is taken as main. Only one bus may be included into
connection chain.

a.

Otherwise if connections define their own variables, one of them will be chosen. Modeler may define
which connection should have priority. If priorities are not set then choice between connection variables
is random.

b.

At last, if connections do not define new variables then variable is chosen between connected variables.c.

2.

∃ y ∈ XMM :  x ←
p
y.  We set S(x) = p(S(y)).  Let us  show that this  definition is  correct: if  y  has  no  other

connections  or has  undirected  connection,  then S(y) = N(Main(y))  –  is  already defined.  If  y  has  ingoing

directed connection y ←
q
z, then applying the same rule to y:

S(x) = p(S(y)) = p(q(S(z))) .

This  process is  guaranteed to converge because there is  a limited number of variables  in the model and the
semantic rules restrict the cyclic and multiple directed connections. Finally we obtain the mapping:

 S(x) = p(q(…r(N(Main(v)))) = p(q(…r(N(u))) .

Here u = Main(v) and u has no ingoing directed connections.

Thus, we may define a mapping which associates each variable from XMM  with an expression:

S(x) =













S(Main(x)),     ∃ y ∈ XMM :  x ↔ y

p(S(y)),     ∃ y ∈ XMM :  x ←
p
y

N(x),                   otherwise  

3.

Step 4. The procedure is applied to the modular model. Each element is copied to the plain model. If the element is a
compartment, then this  procedure is  applied to all its  inner elements recursively. This process takes into account the
replacement rules  generated on the previous  step.  Namely, all references to variable x  are replaced by references to
expression S(x).
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Additionally, a number of special rules are applied during this process:

Equations. Assignments (including the initial assignments and event assignments) and differential equations which define
the variables  x  such that S(x) ≠ N(x)  are ignored.  Those variables  are either replaced  via directed  connection and
therefore their  dynamic  is  defined  by another variable,  or interconnected  via undirected  connections  and  were not
considered as main.

Differential equations. If several variables are defined by differential equations and there is an undirected connection
between them,

x1 ↔ x2 ↔ … ↔ xm ,   S(xi) = x

dxi
dt

= fi

then a new differential equation is generated:

dS(x)

dt
= ∑

i= 1

m

fi

Thereby, the chain of connected variables is transformed into one variable, whose dynamic is the sum of the dynamics of
the chain variables. It should be noted that this agrees with stitching reactions for interconnected species (see fig. 8).

Compartments. If two compartments are connected by an undirected connection, they merge into one compartment
containing elements from both of the initial compartments (see fig. 6). If two compartments are connected by a directed
connection, them one of them is replaced by the other, all its elements are removed from the model (see fig. 7).

Figure 6. Compartment merge. Two compartments merge  into one. New compartment contains all content fro m
the initial compartments.

Figure 7.  Compartment  replacement.  Compartment  cont aining species C is  completely replaced with all it s
content. If any species inside it participate in re actions, those reactions are also deleted.

Parameters and species. From a mathematical point of view, species and parameters are almost equal. They both are
associated  with model variables  whose dynamics  may be defined  by assignments,  events,  differential and algebraic
equations and both may be subject of module interface ports so we may establish connections between the parameter and
species. However, they are differently represented in the diagram; therefore we should process such connections in a
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special way. Suppose, we have parameter p in one module and species S in another. We have three possible connections
between them:

p ↔ S. In this case, species S will be selected as the main species and therefore will substitute p in all equations and
assignments.

p →
f
S. Species S will not be entirely substituted by the parameter. Instead, a new equation will be generated to ensure

signal transmission:

" S = f (p) "

p ←
f
S.  Just as  in the simple case with two connected  parameters: the parameter p  will be substituted  by S and all

equations which affect its dynamics will be eliminated (so that its dynamics will be entirely defined by the dynamics of
species S).

Species graphical elements. If two species are connected by an undirected connection, they should now be considered
as one entity. A simple way is to create new species which will replace both original species whenever they are referenced
in the model. In visual representation, all reactions in which the original species participate will now be applied to the new
species. However, if models contain a large number of reactions, they are hard to trace. Another option is to apply a
clone attribute (see [Novère et al, 2009]) indicating that two objects in the Diagram are associated with the same entity and
hence with the same variable. Examples are depicted on fig. 8.

Figure 8. If two species are connected by an undire cted connection, there two ways to create a flat mo del. In flat
model 1, two connected species merge into one and a ll reactions in which they participate are applied to the new
species. In flat model 2, a clone marker [Novère et  al, 2009] is applied instead. Mathematically, both  flat models
are equal.

Let us  consider a situation where we have two  species  connected  by a directed  connection: A → B.  The directed
connection supposes that B will not be changed by its module. So all equations possibly changing its amount should be
eliminated. However, we still want it to participate in the reactions. We cannot simply replace it by A as in the case of
undirected connection, because then A will be affected by these reactions. Therefore, we add both species A and B into
plain model add new assignment equation “B = A” to provide directed connection effect. Besides, we specify boundary
conditions for species B to avoid its amount changing by reactions.

Bus.  A bus is  special element in the modular diagram representing variables. It serves  as  private interface ports  for
modular model environment. Type is defined by established connections. If undirected connection is established with bus
then no  directed  connections  may be established  and vice versa.  It  also  cannot  have multiple  incoming directed
connections. Several buses may be associated with the same, helping to avoid intersections between connection edges.
Bus connected by undirected connections also allow user to set variable properties that will be used for new variable
corresponding to the chain of undirected connections. Example of buses using is presented on fig. 9.

11



Figure 9. Bus concept. Several buses may be associa ted with the same variable (they are marked with th e same
color). So we may connect modules interfaces remote ly.

Results and discussion
This paper describes a modular approach implemented as a software plugin for BioUML. It is similar to CellML in the
sense that it allows modules integrating using connections between variables. However we present two different types of
connections with different properties and utilize state concept which allow more extensive altering of modules  in the
frames of modular model and makes possible to express semantic similar to SBML composite models. The approach
also  provides  a graphical notation which represents a model in terms of signal transmission between modules.  This
representation is used for both model transformation and general co-simulation approaches. It separates the model visual
creation process from the actual inner implementation of modules and type of simulation.

The developed plugin includes:

Graphical notation for the visual creation of the modular model.1.

Algorithm for generating a flat model on the basis of modular model in the case of certain limitations on the
modules formalisms (DAE with events).

2.

Algorithm for an agent-based approach to co-simulation in the case of arbitrary modules formalisms.3.

A summary table including BioUML with the developed plugin is presented in tables 2 and 3.

The plugin was already used for the development of several modular models:

Integrated apoptosis model [Kutumova et al, 2012] comprising 13 submodels which were derived from different
sources.

Reconstruction in BioUML of the classic overall circulation model by professor Guyton [Guyton et al, 1972]
comprising 18 modules according to the original model scheme.

Model of the human cardiovascular system [Kiselev et al,  2012] incorporating modules  from three deferent
models utilizing different formalisms: a model with heart pulsating [Solodyannikov, 1994] (ODE), a model with
long-term human regulation (ODE) [Karaaslan et al, 2005], and a model of blood flow across 55 largest human
arteries (PDE) [Biberdorf et al, 2012].

Software is in active development. Currently, we continue our research in the following directions:

Full support  of  SBML composite package.  We believe that  SBML composite models  may be effectively
described in our terms of connections and states.

Support for CellML 1.1.

Extending the the library of atomic modules.

Visual models creation and editing improvements: more extensive support of multilevel hierarchical models visual
representation. Automatic layout algorithms improving.

The developed plugin (as well as the source code) is available both in web and standalone BioUML versions.
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Table 2. Modeling features.

Visual
modeling

Visual  modular
modeling

Simulation Analysis
Parameter
estimation

QTAntimony [Smith et al, ] - - - - -

BioUML + + + + +

iBioSim [Myers et al, 2009] + + +

JigCell [Vass et al, 2004] - + + + +

M2SL  [Hernandez  et  al,
2009]

- - + + +

OpenCell - - + - -

ProMoT [Ginkel et al, 2003] + +
Using
DIVA/DIANA

+ +

RoadRunner - - + +

Simulation Core Library - - + - -

TinkerCell  [Chandran et al,
2009]

+ + + + +

COR - - + - -

Little  b [Mallavarapu et al,
2009]

- - - - -

Table 3. Formats and formalisms support.

SBML core
SBML
composite
package

CellML Supported formalisms
Multi-formalism
models

QTAntimony  [Smith  et
al, ]

L3v1 + + DAE, events -

BioUML L3v1 -
import
1.0

DAE, events, PDE, stochastic +

iBioSim  [Myers  et  al,
2009]

L3v1 + - DAE, events, stochastic -

JigCell [Vass et al, 2004] L2v4 - ODE, events, stochastic -

M2SL [Hernandez et  al,
2009]

- - -
Bond-Graph,  DAE,  events,
cellular automata.

+

OpenCell - - + DAE -

ProMoT [Ginkel  et  al,
2003]

L2v1,  except
events

- - DAE, logical -

RoadRunner L3v1 + - DAE, events -

Simulation Core Library L3v1 + - DAE, events -

TinkerCell  [Chandran et
al, 2009]

export - - DAE, stochastic, events -

COR - - + DAE -

Little  b [Mallavarapu et
al, 2009]

- - - ODE -
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