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Abstract Motivation: Systems biology deals with many different typesexierimental data representing
individual components of biological systems. Bebawf these systems over time could be
described using systems of ordinary differentialaggns (ODE). In order to analyze dynamics
of the ODEs and estimate their parameters basedatm obtained in different experimental
conditions, biologists need a flexible frameworktthllows them to create dynamic models and
perform multi-experiment parameter fitting.

Results. We present optimization tools of the BioUML softeighttp://biouml.org) developed
for modeling and analysis of biochemical system®& &kkated optimization plug-in to solve
non-linear optimization problems via minimizatiorf the function of deviations between
experimental data and model simulation results eBxgental data can be considered as separate
sets of time courses or steady states stored ferefif tab-separated files. BioUML includes
several deterministic and stochastic optimizatioathmds which find reasonably accurate
solutions faster than the COPASI software. Somethe6e methods provide constrained
optimization and some of them were parallelized.
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Introduction

Development of experimental technologies in mokchiology led to accumulation of huge volumes afadrelating to
various levels of life organization. However, thatal alone cannot be used to reconstruct the fghnigation of
biological systems. Therefore, the interests ofnfdomatics are now focused on the problems of gatecessing,
including the problems of integration and systera#itin of primary experimental data and the problerhknowledge
production based on mathematics and modern infamaechnologies. The challenge of systems bioldgy
construction of mathematical models to describeathim behavior of biological systems based on ewgsttal data.
Such problems involve studying a large volume d¢é&@ad require software for their processing atefpmeting.

The standard tools for working with biological datalude access to biological databases, formalikestcription of
biological systems, as well as visualization, satioih, parameter fittihg and analysis of ODE modefsresenting these
systems. The BioUML software is an integrated emvirent that was developed to span all of thesehditips. Here we
present optimization tools of this software inteshder multi-experiment training of the models ceshtusing BioUML
notation or imported in the SBML format [Hucka &t 2003]. These tools are available both in thekthgs and web
editions of BioUML.

Optimization problem in BioUML

The general nonlinear optimization problem [Runansand Yao, 2000] can be formulated as followst inminimum of
the objective functios(x), wherex lies in the intersection of thé-dimensional search space

Q={yE]RN ‘)fiSJ’iSJ’i’ )il-,y,'E]R, i=1,...,N},

and the admissible regidfi € RN defined by a set of equality and/or inequality Steaints onx. Since the equality
Js(x) = 0 can be replaced by two inequalitigg(x) < 0 and - g¢(x) < 0, the admissible region can be defined without
loss of generality as



F= {ye RN ‘gs(y) <0, s=1, ...,p}.

In order to get solution situated insi#fewe minimize the penalty function

P = Y, max{0,g,()%
The problem could be solved by different optim@atmethods. We implemented the following of thenthi BioUML
software:

» stochastic ranking evolution strategy (SRES) [Rssan and Yao, 2000];

¢ cellular genetic algorithm MOCell [Nebro et al, 20

e particle swarm optimization (PSO) [Sierra and @o&lD05];

¢ deterministic method of global optimization glbSoBjorkman and Holmstrom, 1999];

¢ adaptive simulated annealing (ASA) [Ingber, 1996].

Table 1 shows the generic scheme of the optimizgiocess for these methods. SRES, MOCell, PSQ@lasdive run

a predefined number of iteration§; considering a sequence of sets (populatidts) = 0, .., Ni; - 1, of potential
solutions (guesses). In the case of the first thredhods, the sizee N * of the population is fixed, whereas in gloSolve
the initial populationDO consists of one guess, while the sige1 of the populatiorPk *1 is found during the iteration
with the numberk = 0, ..., Niz - 1. The method ASA considers sequentially generatm:l;sgaS(k €N, keN*, and

N
- ) . 2
stops if distance betweerf andx¥*1 defined as Euclidean norrf - x¥*1 = \/E =1 (xlk —xf*l) becomes less

than a predefined accuraey

Table 1. An overview of the optimization process for methods SRES, MOCell, PSO, glbSolve and ASA.
Step SRES, MOCell, PSO glbSolve | ASA
1 Setk = 0.
Generate?? = {Xio €n,i=1, ,_,,5},5 ENT. Generate .
2 ] 0 pO - {XO € Q}_ Generater~ € Q.
Find the best_guegse P". . k SetyMin = xO, orr = + oo,
Setx™M = y, Setx =x".
3 Evaluate values of the functiogsandyp for all 0 Evaluateq&(x 0) andllJ(X 0)
guesseg"”. :
4 If a predefined number of iterationg; is passed, then go to step 9] If err < ¢, wheree is a predefined accuracy,
otherwise go to step 5. then go to step 9, otherwise go to step §.
5 Setsys = . F|ndsk+.1 for .the _
current iteration.
6 Generate?*1 = {xk*1 e, i=1,.,5,1}. Generateck*1 € Q.
; Evaluate values of the functiogsandiy Evaluategb(xk+ 1) andlp(xk + 1).
for all guesse®k*1. Seterr = xK — xkK+1
8 Updatex™iM  increment valué by one, go back to step 4.
9 Returnx™iM as the solution.

All methods, excepting glbSolve, are stochastic aadk global minimum of the functiog taking into account the
admissible regiorF. Thus, a guess € Q is more preferable than a guegE QO at some iteration of methods, if
P(x) = 0 andy(y) # 0 ory(x) < Y(y). The method glbSolve is suited to solve only thebfems withQ € F. Values
of the functiony are calculated but do not affect on the generatfqrotential solutions.

Implementing the optimization scheme in BioUML, designed théptimizationProblem interface (fig. 1) comprising
the following procedures:

o getParameters specifies a list of parameters to fit includingritiiication of initial values and variation inteisa
(upper and lower bounds);

o testGoodnessOfFit defines type of the functiong andiy and evaluates their values for a population ofges;
e getEvaluationsNumber returns the number of passed evaluations duritignzation process.
An abstract clas®ptimizationMethod provides the number of subclasses representinigrineptation of the foregoing

methods. These subclasses involve search of opgiamameters by caling a procedge&Solution depending on the
settings of optimization problem.



Figure 1. The class diagram representing implementation of the optimization process in BioUML.
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- © OptimizationProblem -
& getSolution(): doubls[] 0.1 = nhame: String
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Application of non-linear optimization to systems biology

We assume that a mathematical model of some hi@bgiocess consists of a set of chemical sp&cie§Sy, ..., Sm}
associated with variable&(t) = (C1(t), ... Cm(t)) representing their concentrations, and a setadfhgimical reactions
R ={R1, .., Ry} with ratesv(t) = (v1(¢t), ... va(t)) depending on a set of kinetic constaiit€Reaction rates are modeled
by standard laws of chemical kinetics. A Cauchybfmm for ordinary differential equations represanta linear
combination of reaction rates is used to deschbertodel behavior over time:
de(s) _
dt

N -v(C, K, t), €(0) = CP. @

HereN is a stoichiometric matrix of by m. We say that>s is a steady state of the system (1) if
N-v(C*¥,K,t) =0, lim Ci(t) = C%.
t— oo I

Identification of parameterk and initial concentrations? is based on experimental data represented by af petints

¢ (i) defining dynamics of variablegy (t), .., ¢;(t), < m, at given times;;, j = 1, .., r;, wherer; is the number of
such points for the concentrati6f(t), i = 1, ...1. The problem of parameter identification consistminimization of the
function of deviations defined as the normalizedh s squares [Hoops et al, 2006]:

I "I wmin ex
¢(CO'K]=ZI'=1 Zj=1 w; -(cilug) - ¢ p(tUDZ ’

where normalization factor® i, /w; With wnin = minw; are used to make all concentration trajectorieg Isimilar
1

@

importance. The weightsu; are calculated by one of the formulas on expetatignmeasured concentrations:
2

sq _ -1 exp(... mean _

2 -\/ri : E}(Ci ()" (mean square value), ™" =

Wt = \/wisq cw]1 - @M . M (standard deviation).

-1 exp ..
r; -Zj C (tu)‘ (mean value) and

If we want to consider additional constrains

gs(CK)<0,5s=1,.,p, (©)
holding for concentrationg(t) and parameterg for some period of time € [t;‘mr t tf"d], the penalty function is
defined as

cend 2 @
» Zts—to max{0,g¢(C,K)}

- 30, =
l/)(C 'K] s=1 tsend_tsstart+1

This function assumes summation of valgefC, K) in the nodes of grid defined by an ODE solveritd £ numerical
solution of the system (1).

In the particular case, experimental data coulddpeesented by steady state values of species mioatitens. Then
functions ¢ andy have the simpler forms:

I o exp_ss
#(c,K) = Zizl%;“-(ci”—ci P52 (e, K) = Zle(max{o,gs(Css,K)})z

WhereCpr 58 andCl.SS ,1=1,..,1, denote experimental and simulated steady statesva

Typically, researchers want to perform evaluatibrmodel parameters using experimental data obtaivitd different

experimental conditions, i.e. different initial aemtrationsc?1, ..., Ok of species. In such case, we wil consider the
functions

. , (5)
#(cO, .., cO% k)= Z; #(c%, k) andyp(cOL, .., Ok k) = 2; (% K). i



Implementation of the parameter estimation process in BioUML

Initiation of the parameter estimation process requdefinition of many details including specifioa of the search
space, the admissible region, settings of numermietihods to solve ODE system and optimization grblinks to the

files with experimental data and model descriptita, In order to structure this information, wesigeed an appropriate
hierarchy of classes (fig. 2) taking into accoimet following rules:

¢ experimental data must be represented by time-eswssteady states of chemical species concensatn the
first case, these data may be expressed as pgeevdihies obtained, for example, on the basis ef th
Western-blot technology;

e an initial state of the Cauchy problem must be Bipdcfor each considered file with experimentatadéhese
states may be different for some experiments);

e parameters to fit may be divided into local ancbglo

o the local parameters can take different valuesséone groups of experiments (for example, conducted
for different cell lines);

o the global parameters have the same value foxgrinents.
The main clasOptimization in fig. 2 comprises definition of the optimizationethod and parameters including the

model parameters to fit, parametric constraintslihglfor given time intervals, and experiments. Tokowing fields
keep information about each experiment;

¢ cdlLine defines an experimental group to evaluate locapeters of the model;
¢ diagramStateName corresponds to the model initial state;
o experimentType defines the time-course or steady state type pérgrental data;

« tableSupport contains the link to the file with experimentatalaand specifies a method for calculation of wsigh
wj in the formula (2);

e parameterConnections is a list of correspondences between variable samthe model and in the experimental
file including information whether data in thisefiire expressed as exact values or as valued relategiven time

p0|nt.
Figure 2. The class diagram of the optimization plug-in in BioUML.
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An obiject of theOptimizationMethod class contains a set of parametenstifodParameters) including links to the file
with the processed modelig@gramPath) and the directory to save results when the pasnestimation wil be
completed resultPath). The estimation process begins immediately dfier objectcontrol gets commandioRun.
Goodness of the current fit is defined throughabgectoptimizationProblem providing correct simulation of the model.
Firstly, evaluation of functions (2) and (4) is foemed separately for all initial states of the rabldy calling a method
testGoodnessOfFit for each object of the clasSngleExperimentParameterEstimation associated with the certain
experiment. Then the total values of these funstiare calculated in the clafarameterEstimationProblem by the
formulas (5).

The parameter estimation process is optimized ub&dpllowing technologies:

1. Acceleration of simulation of the Cauchy problent ftifferent values of fitted parameter is achieveg
automatic generation and compilation of the Jamascfile at the first iteration of the optimizatialgorithm. At
the subsequent iterations, current values are gassthe object of this compiled class and a swiubf the
Cauchy problem is found.

2. Acceleration of the optimization methods considednpopulation of guesses is achieved by paratieliz of
calculations. The following taslSifnulationTask in fig. 2) is generated for each guess:



o find a solution or a steady state of the sy: (1) for the adjustable parameter val

o evaluate values of the objective function (2) dm@genalty function (4)

When all tasks are generated, they are passedet@xécutor service, which distributes their perfamoe
between the predefined threads.

Fig. 3 shows a graphical user interface of optitisinamethods in the BioUML workbench (desktop edhji The upper
left panel includes a list of methods. Descriptidrihe selected method is provided below. The upigkt panel defines
the search space. Under it you can find the takelpsith settings of optimization problem. In fig.tBe selected tab
contains method parameters and fields displayitegnrediate values of objective/penalty functiond #me number of

passed evaluations. The next tab includes desgripfi experimental data and specifies settingsalffaxperiment fields
listed above.

Figure 3. The user interface of the optimization plug-in provided by the BioUML software.
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Web edition optimization

BioUML web edition (http://ie.biouml.org/bioumiwebis a web application providing access to BioUMDbls and data
via the Internet. The user can manipulate the daieed on the BioUML server and run analyses throting web
browser. The web interface is a set of HTML pagédh mteractive JavaScript content. Ajax technoldgyused to
communicate with the server and process usert@siviithout page reloading.

The web edition provides a set of optimization $odike in the workbench edition. The user canupethe boundaries
and initial values of optimization parameters, stetend adjust an optimization method, manage expeatal data, set up
constraints. After all parameters are adjustedimiggtion process can be launched. Optimizationltesan be saved

and then viewed as a table of fitted parameteresal@Graphical representation of the optimizatioacpss is also
available.

Analysis of the methods convergence

Stochastic methods (SRES, MOCel, PSO and ASAplmival optimization rely on probabilistic approastend have
weak theoretical guarantees of convergence to ldigalgoptimum. However, they can locate its viginitith relative
efficiency [Moles et al, 2003]. In contrast, detirgtic method glbSolve guarantees global optigaifitthe objective
function is continuous or at least continuous @rtkighborhood of a global optimum [Bjérkman andnkérom, 1999].
However, it can not solve general global optimizaproblems with certainty in finite time.

To analyze convergence rate of the implementedadsthwe considered a reaction chain (fig. 4, taplextracted from

the model by L. Neumarat al. [Neumann et al, 2010] and representing activatibcaspase-8 triggered by the receptor
CD95 (APO-1/Fas).



Figure 4. The test model of caspase-8 activation.
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Table 2. List of reactions of caspase-8 activation.

Ne Reactions Kinetic laws
r1|CD95L + FADD:CD95R— DISC| k1 * CcposL - Ccp9SR: FADD
r2| DISC + pro8— DISC:pro8 k2 - Cpisc - Cpros

r3| DISC:pro8 + pro8— 2 - p43/p41| k3 - Cpisc:pro8 - Cpros

r4|2 . pa3/p4l— casp8 ky - C;43/p41

r5| casp8— ks - Ceasps

We performed estimation of parameters using theebespace defined as
0<k <1,0<ks<01,0<k<103i=23,4,

where upper bounds were chosen based on the ofdeagnitude of parameter values proposed by autbbthe
original model. Initial values of variables wereefil according to [Neumann et al, 2010]:

CcposL(0) = 113.220, Ceposr:Fapp(0) = 91.266, Cprog(0) = 64.477.

Estimation was based on the experimental dataraotdly Neumanet al. for procaspase-8 and its cleaved products
p43/p41 and caspase-8 (table 3).

Table 3. Experimental data obtained by Neumann et al. for total procaspase-8 (pro-8), p43/p4l and caspase-8
(casp-8).

Concentrations (nM)

Time (min _1) p43/p4l | pro-8 | casp-8
0.0 0.058 59.963 0.000
10.0 0.268 57.568 0.041
20.0 4.760 58.59Q0 0.316
30.0 8.252 59.424 1.397|
45.0 16.144 | 48.19Q0 3.520
60.0 17.021 | 38.950 3.947
90.0 15.269 | 23.502 4.871
120.0 12.530 | 13.127 4.878
150.0 10.335 | 10.703 4.228

Fig. 5 shows dependence of the objective functieamvalues on the number of considered guessé9@auns of the
optimization process. Statistics of the best, mmath worst values o, as well as the best guesses found by the

methods after consideration 0f7Jg]Jesses are listed in the tables 4 and 5 corresmtn

As can be seen from these tables, the best reasilbbtained by the particle swarm optimization (P& the cellular
genetic algorithm (MOCell). Methods SRES, MOCeklladrSO found similar solutions. Methods ASA and gh8&
found dissimilar values of parametéss andky resulting in lower efficiency compared to thetfitsree methods.

For comparison, some test cases considered inullg by Moleset al. [Moles et al, 2003] resulted in superiority of
SRES. However, the authors did not explore suchadst as genetic algorithms and particle swarm dgatiion.



Figure 5. Dynamics of mean values of the objective function for 100 runs of the optimization process. The best
value obtained by the particle swarm optimization is marked by the red line.
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Table 4. Statistics of values of the function ¢ for 100 runs of the optimization process (the number of considered
guesses was 107).

The best val ue of The mean val ue of The wor st val ue of
Methods
¢ ¢ ¢

PSO |11.787 13.164 14.703
MOCell | 12.082 13.484 14.771

SRES |12.466 14.987 18.283

ASA |13.728 15.794 16.610
glbSolve | 16.614 16.614 16.614

Table 5. The best guesses obtained by optimization methods for 100 runs of the optimization process.

Parameters| SRES MOCell PSO ASA glbSolve
kq 0.0004691 0.000461fL 0.00042f7 0.0001028 0.0020576
ko 0.0002059 0.0002046 0.00021p5 0.0007875 0.0001228
k3 0.0009999 0.0010000 0.0009984 0.0009930 0.0009527
kg 0.0007915 0.0008225 0.0008419 0.0008117 0.0007790
kg 0.032590(0 0.0336720 0.0334157 0.0334118 0.0313443

Comparison of parameter estimation features of BioUML with
other software

We compared optimization tools of BioUML with theldwing software applications assigned for analysi
biochemical networks and supporting the procedtiraauel fitting:

e COPASI (Complex Pathway Simulator) — a stand-afmogram providing an C++ API [Hoops et al, 2006];

¢ AMIGO (Advanced Model Identification using Globapb@nization) — a multi-platform (Windows and Linux)
MATLAB-based toolbox [Balsa-Canto and Banga, 2011];

e SBToolbox 2 (Systems Biology Toolbox 2) — a partS3BPOP Package requiring MATLAB[Schmidt and
Jirstrand, 2005];

e PET (Parameter Estimation Toolkit) — a graphicakusterface intended to run under Windows, Mac>Qand
Unix [Shaffer et al, 2009];

o PottersWheel — a framework designed as a MATLABbow [Maiwald and Timmer, 2008].

Details of the comparison are given in table 6.



Table 6. Comparison of the parameter estimation features for different software applications.

Features BioUML | COPAS | AMIGO SBTOZO' bOX | pET | Potter swheel

Environment Java C++ | MATLAB| MATLAB Zﬁ{l MATLAB
Experimental data:
— Multi-experiment fitting + + + + + +
— Experiment types:

—time course + + + + + +

— steady-state + + - - + -
- Indi_vidual initial state of the model for each + _ + . . .
experiment
— Error bars - - + + _ +
— Normalization of data using weights + + + + + +
Local (experiment dependent) and glojpal + _ + . _ _
parameters

Further, we compared computation speed of the @ation methods implemented in BioUML and COPASbr fhis
purpose, we considered a series of test casesieAdascription of the models used in these tesegds provided
below. For more details, including specificationexperimental data and fitting parameters, see tibahdl file 1 of the
supplementary materials.

In the first test case, we analyzed three model€@95-induced caspase-8 activation constructecherbasis of the
model by Neumanset al. [Neumann et al, 2010}ith varying degrees of detalil (fig. 6, A-C). Thecend test case was
proposed by Mendes et al. [Mendes et al, 2009] adesponded to the model of the MAP kinase cas¢igler)
developed by Kholodenket al. [Kholodenko, 2000]. Finally, we tested the modelBafgci et al. [Bagci et al, 2006]
representing the mitochondria-depended apoptosidting from the cooperative formation of heptamegpoptosome
complex and activation of caspase-9 and caspafige-8)(

Figure 6. The models of caspase-8 activation constructed based on the model by Neumann et al. with the varying
number of species: 7 (A), 13 (B), and 18 (C).
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Figure 7. The model of the MAP kinase cascade constructed by Kholodenko et al.

®

Analyzing the number of the objective function ea#ibns per second for these test cases, we fcatdBioUML
showed a better result than COPASI (fig. 9).



Figure 9. The number of the objective function evaluations per second for different test cases in COPASI and
BioUML: the model by Neumann et al. including 7 (A), 13 (B), and 18 (C) species; the model by Kholodenko et al.
consisting of 8 species (D); the model of Bagci et al. consisting of 32 species (E).
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Discussion

In this paper, we considered parameter estimatimts tof the BioUML software. These tools can be liefdpto
biological systems characterized with a set of QDHEe fitting process is based on experimental timarse or steady
state measurements, and assumes minimization offuthetion of error between these measurements aed t
corresponding model prediction. We implemented sd\wtochastic and deterministic global optimizatmethods as
new plug-in for BioUML. None of these methods ideefive for all cases. Nevertheless, on the basiow
observations, we concluded that adaptive simulaiteealing can be used when it is necessary to lgdiiott the vicinity

of the solution. In the case when adequacy of isolig more preferable than the rate of convergehdebetter to use
such methods as MOCel, PSO and SRES.

Parameter fitting is an important part of the qit@tiMe biological modeling. However, if the modetludes more
elements than are necessary to approximate expéagindata with the given accuracy, we face the lpralof overfitting
[Hawkins, 2004]. In this case, there is no ovdrakt solution and it is expedient to find distibatof the parameter
values which are compatible with observed expetiahelynamics. For this purpose, we should run paranestimation
process many times (it is better with different imzation methods) and evaluate bounds for all paters.
Implementation of this technique in BioUML is akder the future work.

We successfully applied our optimization plug-im freation of the combined model of CD95 and #B-signaling
pathways [Kutumova et al, 2013], where the probtgparameter overfitting was solved using the methogy of
model reduction [Gorban et al, 2010].
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