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Abstract Motivation: Systems biology deals with many different types of experimental data representing
individual components  of biological systems.  Behavior of these systems  over time could  be
described using systems of ordinary differential equations (ODE). In order to analyze dynamics
of the ODEs  and estimate their parameters  based  on data obtained in different experimental
conditions, biologists need a flexible framework that allows them to create dynamic models and
perform multi-experiment parameter fitting.

Results: We present optimization tools of the BioUML software (http://biouml.org) developed
for modeling and analysis  of biochemical systems.  We created  optimization plug-in to  solve
non-linear  optimization  problems  via  minimization  of  the  function  of  deviations  between
experimental data and model simulation results. Experimental data can be considered as separate
sets of time courses or steady states stored in different tab-separated files. BioUML includes
several  deterministic  and  stochastic  optimization  methods  which  find  reasonably  accurate
solutions  faster  than  the  COPASI  software.  Some  of  these  methods  provide  constrained
optimization and some of them were parallelized.

Keywords BioUML, parameter estimation, multi-experiment parameter fitting

Introduction
Development of experimental technologies in molecular biology led to accumulation of huge volumes of data relating to
various  levels  of  life organization.  However,  the data alone cannot be used  to  reconstruct  the full organization of
biological systems. Therefore, the interests  of bioinformatics  are now focused on the problems of data processing,
including the problems of integration and systematization of primary experimental data and the problems of knowledge
production  based  on  mathematics  and  modern  information  technologies.  The  challenge  of  systems  biology  is
construction of mathematical models to describe dynamic behavior of biological systems based on experimental data.
Such problems involve studying a large volume of data and require software for their processing and interpreting.

The standard tools for working with biological data include access to biological databases, formalized description of
biological systems, as well as visualization, simulation, parameter fitting and analysis of ODE models representing these
systems. The BioUML software is an integrated environment that was developed to span all of these capabilities. Here we
present optimization tools of this software intended for multi-experiment training of the models created using BioUML
notation or imported in the SBML format [Hucka et al, 2003]. These tools are available both in the desktop and web
editions of BioUML.

Optimization problem in BioUML
The general nonlinear optimization problem [Runarsson and Yao, 2000] can be formulated as follows: find a minimum of
the objective function ϕ(x), where x lies in the intersection of the N-dimensional search space

Ω = {y ∈ ℝN  ||  yi


≤ yi ≤ yi ,   yi


, yi ∈ ℝ,   i = 1, …, N},

and the admissible region ℱ ⊆ ℝN  defined by a set of equality and/or inequality constraints on x. Since the equality
gs(x) = 0 can be replaced by two inequalities gs(x) ≤ 0 and – gs(x) ≤ 0, the admissible region can be defined without
loss of generality as
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ℱ = {y ∈ ℝN  ||  gs(y) ≤ 0,   s = 1, …, p} .

In order to get solution situated inside ℱ, we minimize the penalty function

ψ(x) = ∑
i= 1

s

max{0, gs(x)}2 .

The problem could be solved by different optimization methods. We implemented the following of them in the BioUML
software:

stochastic ranking evolution strategy (SRES) [Runarsson and Yao, 2000];

cellular genetic algorithm MOCell [Nebro et al, 2009];

particle swarm optimization (PSO) [Sierra and Coello, 2005];

deterministic method of global optimization glbSolve [Björkman and Holmström, 1999];

adaptive simulated annealing (ASA) [Ingber, 1996].

Table 1 shows the generic scheme of the optimization process for these methods. SRES, MOCell, PSO and glbSolve run

a predefined number of iterations Nit  considering a sequence of sets (populations) P i, i = 0, …, Nit − 1, of potential

solutions (guesses). In the case of the first three methods, the size s ∈ ℕ +  of the population is fixed, whereas in glbSolve

the initial population P0  consists of one guess, while the size sk+ 1  of the population Pk+1  is found during the iteration

with the number k = 0, …, Nit − 1. The method ASA considers sequentially generated guesses xk ∈ Ω,  k ∈ ℕ + , and

stops if distance between xk  and xk+ 1  defined as Euclidean norm xk − xk+ 1 = ∑
i = 1

N

xi

k − x
i
k+ 1



2√  becomes less

than a predefined accuracy ε.

Table 1. An overview of the optimization process for methods SRES, MOCell, PSO, glbSolve and ASA.

Step SRES, MOCell, PSO glbSolve ASA

1 Set k = 0.

2

Generate P0 = {xi
0 ∈ Ω,  i = 1, …, s}, s ∈ ℕ + .

Find the best guess y ∈ P0.

Set xmin = y.

Generate

P0 = {x0 ∈ Ω}.

Set xmin = x0.

Generate x0 ∈ Ω.

Set xmin = x0, err = + ∞.

3 Evaluate values of the functions ϕ and ψ for all guesses P0 . Evaluate ϕx
0
 and ψx

0
.

4
If a predefined number of iterations Nit  is passed, then go to step 9,

otherwise go to step 5.
If err < ε, where ε is a predefined accuracy,
then go to step 9, otherwise go to step 6.

5 Set sk+ 1 = s.
Find sk+ 1  for the

current iteration.
–

6 Generate Pk+ 1 = {xi
k+ 1 ∈ Ω,  i = 1, …, sk+ 1}. Generate xk+ 1 ∈ Ω.

7
Evaluate values of the functions ϕ and ψ

for all guesses Pk+ 1 .

Evaluate ϕx
k+1

 and ψx
k+ 1

.

Set err = xk − xk+ 1 .

8 Update xmin . Increment value k by one, go back to step 4.

9 Return xmin  as the solution.

All methods, excepting glbSolve, are stochastic and seek global minimum of the function ϕ  taking into account the
admissible region ℱ.  Thus,  a guess  x ∈ Ω  is  more preferable than a guess  y ∈ Ω  at some iteration of methods,  if
ψ(x) = 0 and ψ(y) ≠ 0 or ψ(x) < ψ(y). The method glbSolve is suited to solve only the problems with Ω ⊆ ℱ. Values
of the function ψ are calculated but do not affect on the generation of potential solutions.

Implementing the optimization scheme in BioUML, we designed the OptimizationProblem interface (fig. 1) comprising
the following procedures:

getParameters specifies a list of parameters to fit including identification of initial values and variation intervals
(upper and lower bounds);

testGoodnessOfFit defines type of the functions ϕ and ψ and evaluates their values for a population of guesses;

getEvaluationsNumber returns the number of passed evaluations during optimization process.

An abstract class OptimizationMethod provides the number of subclasses representing implementation of the foregoing
methods. These subclasses involve search of optimal parameters by calling a procedure getSolution depending on the
settings of optimization problem.
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Figure 1. The class diagram representing implementation of the optimization process in BioUML.

Application of non-linear optimization to systems biology
We assume that a mathematical model of some biological process consists of a set of chemical species S = {S1 , …, Sm}
associated with variables C(t) = (C1(t), …, Cm(t)) representing their concentrations, and a set of biochemical reactions

ℛ = {R1 , …, Rn} with rates v(t) = (v1(t), …, vn(t)) depending on a set of kinetic constants K. Reaction rates are modeled
by standard  laws  of chemical kinetics.  A Cauchy problem for  ordinary differential equations  representing a linear
combination of reaction rates is used to describe the model behavior over time:

dC(t)
dt

= N ⋅ v(C, K , t), C(0) = C0 .

Here N is a stoichiometric matrix of n by m. We say that C ss is a steady state of the system (1) if

N ⋅ v(C ss , K , t) = 0, lim
t→∞

Ci(t) = C
i
ss.

Identification of parameters K  and initial concentrations C0  is based on experimental data represented by a set of points

C
i

exp(ti j) defining dynamics of variables C1(t), …, Cl(t), l ≤ m, at given times ti j , j = 1, …, ri, where ri  is the number of

such points for the concentration Ci(t), i = 1, …l. The problem of parameter identification consists in minimization of the
function of deviations defined as the normalized sum of squares [Hoops et al, 2006]:

ϕ(C0 , K) = ∑
i = 1

l ∑
j = 1

ri ωmin
ωi

⋅ Ci(ti j) − C
i

exp(ti j)
2

 ,

where normalization factors ωmin /ωi  with ωmin = min
i

ωi  are used to make all concentration trajectories have similar

importance.  The  weights  ωi  are  calculated  by  one  of  the  formulas  on  experimentally  measured  concentrations:

ω
i

sq = r
i
−1 ⋅ ∑

j

Ci

exp(ti j)
2

√  (mean  square  value),  ω
i
mean =

|
||ri

−1 ⋅ ∑
j
C
i

exp(ti j)|||  (mean  value)  and

ω
i
st = ω

i

sq
⋅ω

i

sq − ω
i
mean ⋅ω

i
mean√  (standard deviation).

If we want to consider additional constrains

gs(C, K) ≤ 0, s = 1, …, p,

holding for concentrations C(t) and parameters  K  for some period of time t ∈ ts
start , ts

end
,  the penalty function is

defined as

ψ(C0 , K) = ∑
s = 1

p











∑
t = ts

0
ts
end

max{0, gs(C,K)}

ts
end − ts

start + 1











2

.

This function assumes summation of values gs(C, K) in the nodes of grid defined by an ODE solver to find a numerical
solution of the system (1).

In the particular case, experimental data could be represented by steady state values of species concentrations. Then
functions ϕ and ψ have the simpler forms:

ϕ(C0 , K) = ∑
i = 1

l ωmin
ωi

⋅ Ci
ss − C

i

exp_ss


2
 , ψ(C0 , K) = ∑

s = 1

p

(max{0, gs(C ss , K)})2

where C
i

exp_ss and C
i
ss, i = 1, …, l, denote experimental and simulated steady state values.

Typically, researchers want to perform evaluation of model parameters using experimental data obtained with different

experimental conditions, i.e. different initial concentrations C01 , …, C0k  of species. In such case, we will consider the
functions

ϕC
01 , …, C0k , K = ∑

i= 1

k

ϕ(C0i , K) and ψC
01 , …, C0k , K = ∑

i = 1

k

ψ(C0i , K).
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Implementation of the parameter estimation process in BioUML
Initiation of the parameter estimation process requires definition of many details  including specification of the search
space, the admissible region, settings of numerical methods to solve ODE system and optimization problem, links to the
files with experimental data and model description, etc. In order to structure this information, we designed an appropriate
hierarchy of classes (fig. 2) taking into account the following rules:

experimental data must be represented by time-courses or steady states of chemical species concentrations; in the
first  case,  these data may be expressed  as  percentage values  obtained,  for  example,  on the basis  of  the
Western-blot technology;

an initial state of the Cauchy problem must be specified for each considered file with experimental data (these
states may be different for some experiments);

parameters to fit may be divided into local and global:

the local parameters can take different values for some groups of experiments (for example, conducted
for different cell lines);

the global parameters have the same value for all experiments.

The main class  Optimization  in fig.  2 comprises  definition of the optimization method and parameters  including the
model parameters to fit, parametric constraints holding for given time intervals, and experiments. The following fields
keep information about each experiment:

cellLine defines an experimental group to evaluate local parameters of the model;

diagramStateName corresponds to the model initial state;

experimentType defines the time-course or steady state type of experimental data;

tableSupport contains the link to the file with experimental data, and specifies a method for calculation of weights
ωi in the formula (2);

parameterConnections is a list of correspondences between variable names in the model and in the experimental
file including information whether data in this file are expressed as exact values or as values related to a given time
point.

Figure 2. The class diagram of the optimization plug-in in BioUML.

An object of the OptimizationMethod class contains a set of parameters (methodParameters) including links to the file
with the processed  model (diagramPath)  and  the directory to  save results  when the parameter estimation will be
completed  (resultPath).  The estimation process  begins  immediately after the object  control  gets  command  doRun.
Goodness of the current fit is defined through the object optimizationProblem providing correct simulation of the model.
Firstly, evaluation of functions (2) and (4) is performed separately for all initial states of the model by calling a method
testGoodnessOfFit  for  each object  of  the class  SingleExperimentParameterEstimation  associated  with the certain
experiment.  Then the total values  of these functions  are calculated in the class  ParameterEstimationProblem by the
formulas (5).

The parameter estimation process is optimized using the following technologies:

Acceleration of  simulation of  the Cauchy problem for  different  values  of  fitted  parameter  is  achieved  by
automatic generation and compilation of the Java class file at the first iteration of the optimization algorithm. At
the subsequent iterations, current values are passed to the object of this compiled class and a solution of the
Cauchy problem is found.

1.

Acceleration of the optimization methods considering a population of guesses is achieved by parallelization of
calculations. The following task (SimulationTask in fig. 2) is generated for each guess:

2.
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find a solution or a steady state of the system (1) for the adjustable parameter values;

evaluate values of the objective function (2) and the penalty function (4)
When all tasks  are generated,  they are passed  to  the executor service,  which distributes  their  performance
between the predefined threads.

Fig. 3 shows a graphical user interface of optimization methods in the BioUML workbench (desktop edition). The upper
left panel includes a list of methods. Description of the selected method is provided below. The upper right panel defines
the search space. Under it you can find the tab panel with settings of optimization problem. In fig. 3 the selected tab
contains method parameters and fields displaying intermediate values of objective/penalty functions and the number of
passed evaluations. The next tab includes description of experimental data and specifies settings for all experiment fields
listed above.

Figure 3. The user interface of the optimization plug-in provided by the BioUML software.

Web edition optimization
BioUML web edition (http://ie.biouml.org/bioumlweb/) is a web application providing access to BioUML tools and data
via the Internet.  The user can manipulate the data stored  on the BioUML server and run analyses through the web
browser. The web interface is  a set of HTML pages with interactive JavaScript content. Ajax technology is  used to
communicate with the server and process user activities without page reloading.

The web edition provides a set of optimization tools, like in the workbench edition. The user can set up the boundaries
and initial values of optimization parameters, select and adjust an optimization method, manage experimental data, set up
constraints. After all parameters are adjusted, optimization process can be launched. Optimization results can be saved
and  then viewed  as  a table of fitted  parameter values.  Graphical representation of the optimization process  is  also
available.

Analysis of the methods convergence
Stochastic methods (SRES, MOCell, PSO and ASA) for global optimization rely on probabilistic approaches and have
weak theoretical guarantees of convergence to the global optimum. However, they can locate its  vicinity with relative
efficiency [Moles et al, 2003]. In contrast, deterministic method glbSolve guarantees global optimality, if the objective
function is continuous or at least continuous in the neighborhood of a global optimum [Björkman and Holmström, 1999].
However, it can not solve general global optimization problems with certainty in finite time.

To analyze convergence rate of the implemented methods, we considered a reaction chain (fig. 4, table 2) extracted from
the model by L. Neumann et al. [Neumann et al, 2010] and representing activation of caspase-8 triggered by the receptor
CD95 (APO-1/Fas).
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Figure 4. The test model of caspase-8 activation.

Table 2. List of reactions of caspase-8 activation.

№ Reactions Kinetic laws

r1 CD95L + FADD:CD95R → DISC k1 ⋅ CCD95L ⋅ CCD95R :FADD

r2 DISC + pro8 → DISC:pro8 k2 ⋅ CDISC ⋅ Cpro8

r3 DISC:pro8 + pro8 → 2 · p43⁄p41 k3 ⋅ CDISC :pro8 ⋅ Cpro8

r4 2 · p43/p41 → casp8 k4 ⋅ Cp43/p41
2

r5 casp8 → k5 ⋅ Ccasp8

We performed estimation of parameters using the search space defined as

0 ≤ k1 ≤ 1, 0 ≤ k5 ≤ 0.1, 0 ≤ ki ≤ 10 −3 , i = 2, 3, 4,

where upper bounds were chosen based on the order of magnitude of parameter values proposed by authors of the
original model. Initial values of variables were fixed according to [Neumann et al, 2010]:

CCD95L(0) = 113.220, CCD95R :FADD(0) = 91.266, Cpro8(0) = 64.477.

Estimation was based on the experimental data obtained by Neumann et al. for procaspase-8 and its cleaved products
p43/p41 and caspase-8 (table 3).

Table 3. Experimental data obtained by Neumann et al.  for total procaspase-8 (pro-8), p43/p41 and caspase-8
(casp-8).

Time (min -1 )
Concentrations (nM)

p43/p41 pro-8 casp-8

0.0 0.058 59.963 0.000

10.0 0.268 57.565 0.041

20.0 4.760 58.590 0.316

30.0 8.252 59.422 1.397

45.0 16.144 48.190 3.520

60.0 17.021 38.950 3.947

90.0 15.269 23.502 4.871

120.0 12.530 13.127 4.878

150.0 10.335 10.703 4.228

Fig. 5 shows dependence of the objective function mean values on the number of considered guesses for 100 runs of the
optimization process. Statistics  of the best, mean and worst values of ϕ,  as  well as  the best guesses found by the

methods after consideration of 107 guesses are listed in the tables 4 and 5 correspondently.

As can be seen from these tables, the best result was obtained by the particle swarm optimization (PSO) and the cellular
genetic  algorithm (MOCell).  Methods SRES, MOCell and PSO found similar solutions. Methods ASA and glbSolve
found dissimilar values of parameters k1  and k2  resulting in lower efficiency compared to the first three methods.

For comparison, some test cases considered in the study by Moles et al. [Moles et al, 2003] resulted in superiority of
SRES. However, the authors did not explore such methods as genetic algorithms and particle swarm optimization.
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Figure 5. Dynamics of mean values of the objective function for 100 runs of the optimization process. The best
value obtained by the particle swarm optimization is marked by the red line.

Table 4. Statistics of values of the function ϕ for 100 runs of the optimization process (the number of considered

guesses was 107).

Methods
The best value of

ϕ

The mean value of
ϕ

The worst value of
ϕ

PSO 11.787 13.164 14.703

MOCell 12.082 13.484 14.771

SRES 12.466 14.987 18.283

ASA 13.728 15.794 16.610

glbSolve 16.614 16.614 16.614

Table 5. The best guesses obtained by optimization methods for 100 runs of the optimization process.

Parameters SRES MOCell PSO ASA glbSolve

k1 0.0004691 0.0004611 0.0004277 0.0001028 0.0020576

k2 0.0002059 0.0002046 0.0002155 0.0007875 0.0001228

k3 0.0009999 0.0010000 0.0009984 0.0009930 0.0009527

k4 0.0007915 0.0008225 0.0008419 0.0008117 0.0007790

k5 0.0325900 0.0336720 0.0334167 0.0334118 0.0313443

Comparison  of  parameter  estimation  features  of  BioUML  with
other software
We compared  optimization  tools  of  BioUML with  the  following  software  applications  assigned  for  analysis  of
biochemical networks and supporting the procedure of model fitting:

COPASI (Complex Pathway Simulator) – a stand-alone program providing an C++ API [Hoops et al, 2006];

AMIGO (Advanced Model Identification using Global Optimization) – a multi-platform (Windows and Linux)
MATLAB-based toolbox [Balsa-Canto and Banga, 2011];

SBToolbox 2 (Systems  Biology Toolbox 2) –  a part of SBPOP Package requiring MATLAB[Schmidt and
Jirstrand, 2005];

PET (Parameter Estimation Toolkit) – a graphical user interface intended to run under Windows, Mac OS X, and
Unix [Shaffer et al, 2009];

PottersWheel – a framework designed as a MATLAB toolbox [Maiwald and Timmer, 2008].

Details of the comparison are given in table 6.
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Table 6. Comparison of the parameter estimation features for different software applications.

Features BioUML COPASI AMIGO
SBToolbox

2
PET PottersWheel

Environment Java C++ MATLAB MATLAB
Perl,
Gtk+

MATLAB

Experimental data:

– Multi-experiment fitting + + + + + +

– Experiment types:

  – time course + + + + + +

  – steady-state + + − − + −

–  Individual  initial  state  of  the  model  for  each
experiment

+ − + + + +

– Error bars − − + + − +

– Normalization of data using weights + + + + + +

Local  (experiment  dependent)  and  global
parameters

+ − + + − −

Further, we compared computation speed of the optimization methods implemented in BioUML and COPASI. For this
purpose, we considered a series of test cases. A brief description of the models used in these test cases is provided
below. For more details, including specification of experimental data and fitting parameters, see Additional file 1 of the
supplementary materials.

In the first test case, we analyzed three models of CD95-induced caspase-8 activation constructed on the basis of the
model by Neumann et al. [Neumann et al, 2010] with varying degrees of detail (fig. 6, A-C). The second test case was
proposed by Mendes et al. [Mendes et al, 2009] and corresponded to the model of the MAP kinase cascade (fig. 7)
developed by Kholodenko et al. [Kholodenko, 2000]. Finally, we tested the model of Bagci et al. [Bagci et al, 2006]
representing the mitochondria-depended apoptosis resulting from the cooperative formation of heptameric apoptosome
complex and activation of caspase-9 and caspase-3 (fig. 8).

Figure 6. The models of caspase-8 activation constructed based on the model by Neumann et al. with the varying
number of species: 7 (A), 13 (B), and 18 (C).
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Figure 7. The model of the MAP kinase cascade constructed by Kholodenko et al.

Figure 8. The model of the mitochondria-depended apoptosis proposed by Bagci et al.

Analyzing the number of the objective function evaluations  per second for these test cases, we found that BioUML
showed a better result than COPASI (fig. 9).
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Figure 9. The number of the objective function evaluations per second for different test cases in COPASI and
BioUML: the model by Neumann et al. including 7 (A), 13 (B), and 18 (C) species; the model by Kholodenko et al.
consisting of 8 species (D); the model of Bagci et al. consisting of 32 species (E).

Discussion
In this  paper,  we considered  parameter  estimation tools  of  the BioUML software.  These tools  can be applied  to
biological systems characterized with a set of ODEs. The fitting process is based on experimental time course or steady
state  measurements,  and  assumes  minimization  of  the function  of  error  between  these  measurements  and  the
corresponding model prediction. We implemented several stochastic and deterministic global optimization methods as
new plug-in  for  BioUML.  None  of  these  methods  is  effective  for  all  cases.  Nevertheless,  on  the  basis  of  our
observations, we concluded that adaptive simulated annealing can be used when it is necessary to quickly find the vicinity
of the solution. In the case when adequacy of solution is more preferable than the rate of convergence, it is better to use
such methods as MOCell, PSO and SRES.

Parameter fitting is  an important part of the quantitative biological modeling.  However,  if  the model includes  more
elements than are necessary to approximate experimental data with the given accuracy, we face the problem of overfitting
[Hawkins, 2004]. In this case, there is no overall best solution and it is expedient to find distribution of the parameter
values which are compatible with observed experimental dynamics. For this purpose, we should run parameter estimation
process  many  times  (it  is  better  with  different  optimization  methods)  and  evaluate  bounds  for  all  parameters.
Implementation of this technique in BioUML is a task for the future work.

We successfully applied our optimization plug-in for creation of the combined model of CD95 and NF-κB signaling
pathways [Kutumova et al,  2013], where the problem of parameter overfitting was solved using the methodology of
model reduction [Gorban et al, 2010].
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