Master-regulators driving resistance of non-small cell lung cancer cells to p53 reactivator Nutlin-3
DOI: 10.12704/vb/e20
Abstract
p53 is one of the most important targets in various cancers including non-small cell lung cancer (NSCLC). Nutlin-3 reactivates p53 in cancer cells by interacting with the complex of p53 and Mdm-2, which leads to increased apoptosis of cancer cells. Nevertheless, clinical and experimental studies of Nutlin-3 have shown that in some cases cancer cells are not sensitive to this compound. We studied possible mechanisms of Nutlin-3 resistance through increased activity of pro-survival pathways appeared to be more active in the resistant cells, as compared to the cells sensitive to the treatment by this compound. Using genome-wide gene expression profiling we compared several NSCLC cell lines. Using original bioinformatics approaches we analyzed the revealed gene expression patterns in sensitive and resistant cells and identified complexes of transcription factors specifically regulating different expression of genes in the resistant cell lines. Analysis of the signal transduction network upstream from transcription factors allowed us to identify potential master-regulators responsible for maintaining this resistant state. Among them the most promising was mTOR acting in the context of the activated PI3K pathway. We validated these findings experimentally. The Nutlin-3 resistant cell lines showed the highest sensitivity to mTOR/PI3K inhibitors which lead to rapid death.
Keywords
Full Text:
PDFReferences
Ray-Coquard I, Blay JY, Italiano A, Le Cesne A, Penel N, Zhi J, Heil F, Rueger R, Graves B, Ding M, Geho D, Middleton SA, Vassilev LT, Nichols GL, Bui BN Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol. 2012 Nov; 13(11):1133-40.
Burgess A, Chia KM, Haupt S, Thomas D, Haupt Y, Lim E. Clinical Overview of MDM2/X-Targeted Therapies. Front Oncol. 2016 Jan 27;6:7. doi: 10.3389/fonc.2016.00007. eCollection 2016. Review.
Haupt, Y., Maya, R., Kazaz, A. & Oren, M. Mdm2 promotes the rapid degradation of p53. // Nature – 1997. – Vol. 387. P. 296–29
Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. // Science. – 2004. – Vol. 303(5659). P.844–848.
Grasberger BL, Lu T, Schubert C, Parks DJ, Carver TE, Koblish HK, Cummings MD, LaFrance LV, Milkiewicz KL, Calvo RR, et al. Discovery and cocrystal structure of benzodiazepinedione HDM2 antagonists that activate p53 in cells. // J Med Chem. – 2005. – Vol. 48. P. 909–912.
Shangary S, Qin D, McEachern D, Liu M, Miller RS, Qiu S, Nikolovska-Coleska Z, Ding K, Wang G, Chen J, et al. Temporal activation of p53 by a specific MDM2 inhibitor is selectively toxic to tumors and leads to complete tumor growth inhibition. // Proc Natl Acad Sci USA. – 2008. – Vol. 105(10). P. 3933–3938
Ding K, Lu Y, Nikolovska-Coleska Z, Wang G, Qiu S, Shangary S, Gao W, Qin D, Stuckey J, Krajewski K, et al. Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. // J Med Chem/ – 2006. – Vol. 49. P. 3432–3435
Kojima, K. et al. MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. // Blood – 2005. Vol. 106 P. 3150–3159
Secchiero, P., di Iasio, M. G., Gonelli, A. & Zauli, G. The MDM2 inhibitor Nutlins as an innovative therapeutic tool for the treatment of haematological malignancies. // Curr. Pharm. Des. – 2008. – Vol. 14. P. 2100–2110
Kel, A. E., Stegmaier, P., Valeev, T., Koschmann, J., Poroikov, V., Kel-Margoulis, O. V. and Wingender, E. (2016) Multi-omics “upstream analysis” of regulatory genomic regions helps identifying targets against methotrexate resistance of colon cancer. EuPA Open Proteomics 13, 1-13. doi: 10.1016/j.euprot.2016.09.002.
Anoopkumar-Dukie, J B Carey, T Conere et al. Resazurin assay of radiation response in cultured cells. // The British Journal of Radiology – (2005), – Vol. 78. P. 945-947
Finney D.J. Probit Analysis. // Cambridge Un. Press (1978) Cambridge.
Wingender E (2008) The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation. Brief. Bioinform. 9:326-332.
Kel AE, Gössling E, Reuter I, Cheremushkin E, Kel-Margoulis OV, Wingender E (2003) MATCH: A tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res. 31:3576–3579.
Krull M, Pistor S, Voss N, Kel A, Reuter I, Kronenberg D, Michael H, Schwarzer K, Potapov A, Choi C, Kel-Margoulis O, Wingender E. TRANSPATH: an information resource for storing and visualizing signaling pathways and their pathological aberrations. // Nucleic Acids Res. - (2006) – Vol. 34(Database issue):D546-51.
Waleev T, Shtokalo D, Konovalova T, Voss N, Cheremushkin E, Stegmaier P, Kel-Margoulis O, Wingender E, Kel A. (2006) Composite Module Analyst: identification of transcription factor binding site combinations using genetic algorithm. Nucleic Acids Res.,34c(Web Server issue):W541-5.
Kulakovskiy IV, Vorontsov IE, Yevshin IS, Soboleva AV, Kasianov AS, Ashoor H, Ba-Alawi W, Bajic VB, Medvedeva YA, Kolpakov FA, Makeev VJ. HOCOMOCO: expansion and enhancement of the collection of transcription factor binding sites models. Nucleic Acids Res. 2016 Jan 4;44(D1):D116-25. doi: 10.1093/nar/gkv1249.
Yevshin I, Sharipov R, Valeev T, Kel A, Kolpakov F. GTRD: a database of transcription factor binding sites identified by ChIP-seq experiments. Nucleic Acids Res. 2017 Jan 4;45(D1):D61-D67. doi: 10.1093/nar/gkw951.
Kel A, Voss N, Jauregui R, Kel-Margoulis O, Wingender E. Beyond microarrays: find key transcription factors controlling signal transduction pathways. // BMC Bioinformatics. – (2006) – Vol. 7 Suppl 2:S13.
Chung IM, Ketharnathan S, Kim SH, Thiruvengadam M, Rani MK, Rajakumar G. Making Sense of the Tangle: Insights into Chromatin Folding and Gene Regulation. Genes (Basel). 2016 Sep 23;7(10). pii: E71. doi: 10.3390/genes7100071. Review.
Nikulenkov F, Spinnler C, Li H, Tonelli C, Shi Y, Turunen M, Kivioja T, Ignatiev I, Kel A, Taipale J, Selivanova G. Insights into p53 transcriptional function via genome-wide chromatin occupancy and gene expression analysis. Cell Death Differ. 2012 Dec;19(12):1992-2002.
Refbacks
- There are currently no refbacks.