
BioUML: plugin for population-based modeling

Kiselev I.N.
1,2

, Kolpakov F.A.
1,2

1
Institute of Systems Biology, Ltd

2
Design Technological Institute of Digital Techniques SB RAS

Abstract

Motivation and Aim: Non-linear mixed effects (NLME) model is an efficient tool for

analyzing of population data and estimating of model parameters. It is widely used in

pharmacological modeling, but may be applied to a variety of fields. NLME model

contains core structural model which is the mathematical model of studying process

(e.g. drug dynamics in organism) and suggests distribution of model parameters across

population. nlme is a library written in R language implementing log-likelihood

approach for NLME models creation and analysis. Core structural model should be

supplied as R function which complicates usage of sophisticated mathematical models.

Library nlmeODE allows usage of ODEs inside nlme, but it has certain restrictions on

possible models and textual format complicates using of complex ODE systems.

Results: We have implemented plugin for BioUML platform for population-based

modeling. Plugin includes graphical notation facilitating work with detailed and large-

scaled models, parameter estimation is performed by R function, supplied (using rJava)

with Java simulator from BioUML. It grants possibility to use any model created in

BioUML as a structural model. Executing R script is automatically generated on the

basis of the diagram.

Availability: Plugin is freely available as a part of BioUML software at

www.biouml.orgi.

Introduction
Non-linear mixed effects modeling is an approach for studying of population-based data

and using it for model fitting. Core of NLME model is a structural model which

describes modeled system.

NLME model may be defined as follows:

Where:

 – output (observable) variable,

 – structural model,

 – vector of structural model parameters,

 – regression variable (e.g. time),

 - residual error, are independent and equally distributed,

 – design matrices,

 - fixed effect,

 - random effect, are independent and equally distributed.

Estimation task implies that we have observations for y and our task is to estimate

values of .

http://www.biouml.orgi/

Simulation task implies simply simulation of the structural model i.e. parameters

values are known and we should obtain .

This approach is widely used in pharmacological models, where structural model is

usually so called PK/PD (Pharmacokinetic/Pharmacodynamic) model which describes

drug concentration change in organism compartments and its effect on organism.

NLME approach allows using of PK/PD model not for single patient but for population

of patients.

There are a number of software products (mostly commercial) providing tools for

creation and work with population-based data and NLME models. Most known

products are NONMEM (http://www.lixoft.eu/) and MONOLIX [1].

WinBUGS/PKBUGS [2] is a free tool utilizing Bayesian approach. There are also

libraries for R language such as nlme [3], nlmeODE [4], seamix.

In past year, new language for NLME models description, PharmML [5] has appeared.

It aims to become a standard for models description and exchange between different

tools.

BioUML
BioUML is an open source integrated Java platform for modeling of biological systems.

It provides access to different databases, tools for mathematical modeling, statistical

analysis and numerical calculations including Ordinary Differential Equations (ODE)

with discrete events, stochastic, composite and agent-based models. BioUML utilizes

visual modeling approach which implies:

1. Creation and editing of the model as visual diagram.

2. Automatic Java code generation on the basis of diagram. Generated code is used

for numerical simulations.

BioUML supports Systems Biology Markup Language (SBML, [6]) for models formal

description and Systems Biology Graphical Notation (SBGN, [7]) for visual

representation. It also has its own graphical notation.

Plugin-based structure of the platform facilitates its extending by new software plugins.

Our aim is to provide BioUML with tools for NLME modeling. For this purpose we

have chosen nlme library in R language. The reason is that BioUML supports execution

of R and java-script commands in embedded console.

Graphical notation
We have implemented special diagram type for NLME models representation. BioUML

interface for NLME models is represented on [Figure 1]. Diagram contains elements

referring to another diagram as a structural model. Particularly it may refer to diagram

representing:

1. ODE model with BioUML/SBGN notation

2. SBML model imported in BioUML (BioUML/SBGN notation)

3. Composite model created in BioUML – model which contains other models as

parts. Simulation is performed utilizing either formalism transformation (in the

case of ODE formalism for all submodels) or agent-based approach in the case

of different formalisms.

4. Stochastic model.

http://www.lixoft.eu/

Parameter distribution is defined by variable elements in the WinBUGS-like way

(where we have stochastic, function and constant elements connected with each other).

For detailed information about all NLME diagram elements and their graphical notation

see [Table 1]. Parameter properties such as type, distribution, transformation (e.g. log,

logit, none), initial value, comment, may be specified in “Population variables” tab (see

[Figure 2])

Table 1. NLME diagram graphical notation.

Graphical notation Description

Structural model. Refers another diagram

in BioUML. It may contain port elements.

Each port corresponds to structural model

variables. There three port types:

1. Parameter – variable that should be

estimated.

2. Observed – variable that is a result

of model simulation

3. Other – variable that should not be

estimated, but is connected with

table data somehow (e.g. dose

value)

Ports may be used for connection with

variables on NLME diagram which

defines distributions and dependencies on

covariates.

 Table element. Refers to table data

collection in BioUML. Target table may

contain information about dosing regimen

and experimental data. It also establishes

mapping between table columns (first row

on element image) and variables on

NLME diagram (second row). For given

element table column “Wt” corresponds to

model variable “weight”, column “Dose”

to variable “dose” and so on. Header

contains formula which indicates

dependency between table columns. In

that case formula is “conc ~ Time |

Subject” which means that conc is

dependent on time and is grouped

according to data in “Subject” column.

 Constant parameter. Variable that does

not depend on other variables except

maybe time. E.g. parameter with only

fixed effects and no covariate

dependencies or dosing variable.

Function. Variable which value is a

(deterministic) function of other variables.

Random variable. Defines distribution

and may depend on other variables which

then are used as parameters for this

distribution.

Figure 1. BioUML interface for NLME model creation. A – model repository, B –

toolbar for selected model, C – diagram for selected model (NLME), D – panel for

structural model, E – description for selected element, F – simulation/estimation

options, G – R console with generated script.

Figure 2. Panel “Population variables”

Test example
As an example of NLME model created in BioUML we will use simple NLME model

containing 1-compartmental PK model as a structural model

Structural model:

Although in this simple case we may solve this system analytically, generally to obtain

result of structural model, we should numerically simulate ODE system. Model visual

diagram created in BioUML is shown on [Figure 3].

Figure 3. Simple PK model in BioUML (using SBGN)

Observation model:

Parameters model:

Dosing regimen:

It means that when model time reaches “doseTime”, we should assign with

“doseValue”. Dose time and value may be different among subjects. Note that this rule

is not explicitly depicted on PK model – because it is the part of NLME model.

Corresponding event is adding into Structural model during preprocessing before Java

code is generated.

Visual diagram of the described NLME model is depicted on [Figure 4].

Figure 4. NLME model in BioUML

Parameter estimation
As a tool for NLME model estimation and analysis we picked nlme []. It requires

structural model in the form of R function. Passing simple non-linear function is easy,

however when structural model gets complicated it demands significant effort to use

nlme. Library nlmeODE [2] is designed for using ODE systems. User defines equations

in textual forms, then R function for simulation is automatically generated. Library has

certain limitations and textual form makes creation of complex large-scaled models

complicated. We use the same approach – generating R function which calls Java

classes generated by BioUML. It makes possible using of all model formats and

numerical simulators embedded in BioUML for structural model simulation. On the

other hand, visual approach facilitates complex model creation and usage. Overall

scheme is represented on [Figure 5].

Figure 5. Overall plugin scheme.

Estimation process goes as follows:

1. Java class for numerical model is generated on the basis of structural model

2. Java classes representing NLME model and experiment info form table data are

generated.

3. R script is generated. R script uses “rJava” library for access to generated Java

classes and “nlme” library for parameters estimation procedure. Generated Java

classes are wrapped by R function which takes as arguments parameters value,

conduct numerical simulations and returns results for observed variable. This

function is passed to “nlme”.

4. R script is evaluated in BioUML R console. Result is also outputted into

console, all graphics generated by R are also demonstrated to user (see [Figure

6] for example).

5. After model is created, user may continue updating it and analyzing through R

console or by modifying visual diagram and rerunning estimation process.

Thus we combine BioUML visual modeling and numerical simulation with power of R.

Generated script for Theopheline drug dynamics with wimple PK model:

library(rJava)

library(nlme)

.jinit()

#initializing necessary libraries for BioUML simulation engine usage

.jaddClassPath("C:/projects/java/BioUML/plugins/biouml.plugins.pharm_0.9.6/pharmpl

ugin.jar")

.jaddClassPath("C:/projects/java/BioUML/plugins/biouml.plugins.simulation_0.9.6/sim

ulation.jar")

.jaddClassPath("C:/projects/java/BioUML/plugins/biouml.plugins.simulation_0.9.6/src.j

ar")

.jaddClassPath("C:/projects/java/BioUML/plugins/biouml.workbench_0.9.6/biouml.jar"

)

.jaddClassPath("C:/projects/java/BioUML/plugins/org.apache.log4j_1.2.12/log4j-

1.2.12.jar")

.jaddClassPath("C:/projects/java/BioUML/plugins/cern.jet.random_1.3.0/colt.jar")

.jaddClassPath("C:/Users/Ilya/AppData/Local/Temp/BioUML_8642193711767795961.

tmp/system/000000004_simulation")

#generated Java class instantiating

model <- new(J("Theoph_nlme"))

expInfo <- new(J("Theoph_info"))

modelRunner <- new(J("biouml.plugins.pharm.nlme.MixedEffectModelRunner"))

modelRunner$setMixedEffectModel(model)

modelRunner$setAtol(1.0E-12)

modelRunner$setRtol(1.0E-8)

#experimental data initializing

table <- .jevalArray(expInfo$getTableData(), simplify = TRUE)

table <- as.data.frame(t(table));

colnames(table) <- expInfo$getColumnNames()

Data <- groupedData(conc ~ Time | Subject,

data = table,

labels = list(x = "Time", y = "Concentration"))

#wrapper function which performs numerical simulations

f = function(CL,ka,ke, time, subject)

{

 parametersMap <- new(J("java.util.HashMap"))

 parametersMap$put("CL", CL)

 parametersMap$put("ka", ka)

 parametersMap$put("ke", ke)

 result = modelRunner$calculate(parametersMap, .jarray(time), .jarray(subject))

 return (result)

}

#nlme call: estimation procedure starts here

Theoph.nlme <- nlme(conc ~ f(CL,ka,ke, Time, Subject),

 data = Data, fixed=CL+ka+ke~1, random = pdDiag(CL+ka~1),

 start=c(CL = -3.2,ka = -2.5,ke = 0.5),

 method = "ML",

 control=list(returnObject=TRUE,msVerbose=TRUE),

 verbose=TRUE)

#results plotting

p <- plot(augPred(Theoph.nlme,level=0:1))

Figure 6. Results of Theophiline drug concentration in BioUML using R.

Conclusions
We have created plugin for BioUML platform providing possibility for visual creation,

simulation and parameter estimation of NLME models. As an engine for estimation we

used “nlme” library for R language. Structural model is created visually as a diagram

then Java-code is generated and passed to R using “rJava” library. Comparison of

BioUML with results of nlme with nlmeODE combination are shown in [Table 2]. As

one may see, BioUML is nearly 5 times faster than nlmeODE. However these results

are preliminary and shoul not be considered as reliable.

This may be explained by the fact that BioUML uses code generation instead of model

interpretation, which is less time-consuming especially if simulation is performed many

times during one estimation.

Developed software combines visual representation of mixed-effects models, modeling

and simulation tools in BioUML for structural model simulation, and R algorithms for

work with mixed-effects models.

Plugin is available as a part of BioUML at www.biouml.org.

Table 2. Comparison: BioUML vs nlmeODE. Both are used in nlme library as

numerical simulators for structural model.

http://www.biouml.org/

 BioUML nlmeODE

Duration (s) 23.94 108.84

Loglike -181.177 -177.038

AIC 374.354 366.076

BIC 391.6508 383.3728

Fixed effects ka = 0.468757

ke = -2.458947

CL = -3.228863

ka = 0.4672482

ke= -2.4557651

CL = -3.227748

Random effects ka = 0.6343257

CL = 0.217

ka = 0.6433165

CL = 0.1665241

Residual error 0.7102204 0.709441

References
1. Beal, S., Sheiner, L.B., Boeckmann, A., & Bauer, R.J., NONMEM User's

Guides. (1989-2009), Icon Development Solutions, Ellicott City, MD, USA,

2009.

2. Lunn, D.; Spiegelhalter, D.; Thomas, A.; Best, N. (2009). "The BUGS project:

Evolution, critique and future directions". Statistics in Medicine 28 (25): 3049–3067.

3. Moodie, S.L., et al. PharmML: The Pharmocometrics Markup Language.

Language Specification. 2013. Available at www.pharmml.org.

4. Pinheiro J.C., Bates D.M. Mixed-Effect Models in S and S-PLUS, Springer-

Verlag, New York, NY, 2000. DOI: 10.1007/b98882.

5. Tornoe C.W., et al. Non-linear mixed-effects

pharmacokinetic/pharmacodynamic modelling in NLME using differential equations.

Computer Methods and Programs in Biomedicien, 2004. 76(1) 31-40. DOI:

10.1016/j.cmpb.2004.01.001.

6. Hucka, M. et al. The Systems Biology Markup Language (SBML): A medium

for representation and exchange of biochemical network models. Bioinformatics, 2003,

vol. 19, no. 4, pp. 524–531. DOI: 10.1093/bioinformatics/btg015.

7. Nicolas Le Novère et al. The Systems Biology Graphical Notation. Nature

Biotechnology, 2009, 27, 735 – 741. DOI: 10.1038/nbt.1558.

http://www.pharmml.org/

